dota_to_coco.py 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import os.path as osp
import json
import glob
import cv2
import numpy as np
from PIL import Image
import logging
import argparse

# add python path of PadleDetection to sys.path
parent_path = osp.abspath(osp.join(__file__, *(['..'] * 3)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

from ppdet.modeling.bbox_utils import poly_to_rbox
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

class_name_15 = [
    'plane', 'baseball-diamond', 'bridge', 'ground-track-field',
    'small-vehicle', 'large-vehicle', 'ship', 'tennis-court',
    'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout',
    'harbor', 'swimming-pool', 'helicopter'
]

class_name_16 = [
    'plane', 'baseball-diamond', 'bridge', 'ground-track-field',
    'small-vehicle', 'large-vehicle', 'ship', 'tennis-court',
    'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout',
    'harbor', 'swimming-pool', 'helicopter', 'container-crane'
]


def dota_2_coco(image_dir,
                txt_dir,
                json_path='dota_coco.json',
                is_obb=True,
                dota_version='v1.0'):
    """
    image_dir: image dir
    txt_dir: txt label dir
    json_path: json save path
    is_obb: is obb or not
    dota_version: dota_version v1.0 or v1.5 or v2.0
    """

    img_lists = glob.glob("{}/*.png".format(image_dir))
    data_dict = {}
    data_dict['images'] = []
    data_dict['categories'] = []
    data_dict['annotations'] = []
    inst_count = 0

    # categories
    class_name2id = {}
    if dota_version == 'v1.0':
        for class_id, class_name in enumerate(class_name_15):
            class_name2id[class_name] = class_id + 1
            single_cat = {
                'id': class_id + 1,
                'name': class_name,
                'supercategory': class_name
            }
            data_dict['categories'].append(single_cat)

    for image_id, img_path in enumerate(img_lists):
        single_image = {}
        basename = osp.basename(img_path)
        single_image['file_name'] = basename
        single_image['id'] = image_id
        img = cv2.imread(img_path)
        height, width, _ = img.shape
        single_image['width'] = width
        single_image['height'] = height
        # add image
        data_dict['images'].append(single_image)

        # annotations
        anno_txt_path = osp.join(txt_dir, osp.splitext(basename)[0] + '.txt')
        if not osp.exists(anno_txt_path):
            logger.warn('path of {} not exists'.format(anno_txt_path))

        for line in open(anno_txt_path):
            line = line.strip()
            # skip
            if line.find('imagesource') >= 0 or line.find('gsd') >= 0:
                continue

            # x1,y1,x2,y2,x3,y3,x4,y4 class_name, is_different
            single_obj_anno = line.split(' ')
            assert len(single_obj_anno) == 10
            single_obj_poly = [float(e) for e in single_obj_anno[0:8]]
            single_obj_classname = single_obj_anno[8]
            single_obj_different = int(single_obj_anno[9])

            single_obj = {}

            single_obj['category_id'] = class_name2id[single_obj_classname]
            single_obj['segmentation'] = []
            single_obj['segmentation'].append(single_obj_poly)
            single_obj['iscrowd'] = 0

            # rbox or bbox
            if is_obb:
                polys = [single_obj_poly]
                rboxs = poly_to_rbox(polys)
                rbox = rboxs[0].tolist()
                single_obj['bbox'] = rbox
                single_obj['area'] = rbox[2] * rbox[3]
            else:
                xmin, ymin, xmax, ymax = min(single_obj_poly[0::2]), min(single_obj_poly[1::2]), \
                                     max(single_obj_poly[0::2]), max(single_obj_poly[1::2])

                width, height = xmax - xmin, ymax - ymin
                single_obj['bbox'] = xmin, ymin, width, height
                single_obj['area'] = width * height

            single_obj['image_id'] = image_id
            data_dict['annotations'].append(single_obj)
            single_obj['id'] = inst_count
            inst_count = inst_count + 1
            # add annotation
            data_dict['annotations'].append(single_obj)

    with open(json_path, 'w') as f:
        json.dump(data_dict, f)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='dota anno to coco')
    parser.add_argument('--images_dir', help='path_to_images')
    parser.add_argument('--label_dir', help='path_to_labelTxt', type=str)
    parser.add_argument(
        '--json_path',
        help='save json path',
        type=str,
        default='dota_coco.json')
    parser.add_argument(
        '--is_obb', help='is_obb or not', type=bool, default=True)
    parser.add_argument(
        '--dota_version',
        help='dota_version, v1.0 or v1.5 or v2.0',
        type=str,
        default='v1.0')

    args = parser.parse_args()

    # process
    dota_2_coco(args.images_dir, args.label_dir, args.json_path, args.is_obb,
                args.dota_version)
    print('done!')