paddle_pass_builder.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/paddle_pass_builder.h"
16 17 18
#ifdef PADDLE_WITH_CUDA
#include <cudnn.h>
#endif
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#include <glog/logging.h>

namespace paddle {

void PaddlePassBuilder::AppendPass(const std::string &pass_type) {
  passes_.push_back(pass_type);
}

void PaddlePassBuilder::TurnOnDebug() {
  std::vector<std::string> passes;
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it != "graph_viz_pass") {
      it = passes_.insert(it + 1, "graph_viz_pass");
    } else {
      ++it;
    }
  }
}

std::string PaddlePassBuilder::DebugString() {
  std::stringstream ss;
  ss << "Passes to apply:\n";
  for (auto &pass : passes_) {
    ss << "  - " << pass << '\n';
  }
  return ss.str();
}

void PaddlePassBuilder::DeletePass(const std::string &pass_type) {
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it == pass_type) {
      it = passes_.erase(it);
    } else {
      ++it;
    }
  }
}

void PaddlePassBuilder::InsertPass(size_t idx, const std::string &pass_type) {
  passes_.insert(std::begin(passes_) + idx, pass_type);
}

void PaddlePassBuilder::DeletePass(size_t idx) {
  passes_.erase(std::begin(passes_) + idx);
}

W
Wojciech Uss 已提交
67 68
void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
  analysis_passes_.push_back(pass);
69 70
}

W
Wojciech Uss 已提交
71 72
void PaddlePassBuilder::ClearPasses() { passes_.clear(); }

73 74
// The following passes works for Anakin sub-graph engine.
const std::vector<std::string> kAnakinSubgraphPasses({
N
nhzlx 已提交
75
    "infer_clean_graph_pass",                       //
76
    "quant_conv2d_dequant_fuse_pass",               //
N
nhzlx 已提交
77 78 79 80
    "simplify_anakin_priorbox_detection_out_pass",  //
    "fillconstant_elementwisemul_fuse",             //
    "fc_fuse_pass",                                 //
    "conv_elementwise_add_fuse_pass",               //
81 82 83 84 85
    // "conv_bn_fuse_pass",                            //
    // "conv_elementwise_add_fuse_pass",               //
    "fc_gru_fuse_pass",      //
    "anakin_subgraph_pass",  //
    "fc_gru_fuse_pass",      //
86 87
});

88 89
GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
  passes_.assign({
90 91
    "infer_clean_graph_pass",          //
        "runtime_context_cache_pass",  //
92
        //   "identity_scale_op_clean_pass",              //
93 94 95 96 97 98 99 100
        "conv_affine_channel_fuse_pass",             //
        "conv_eltwiseadd_affine_channel_fuse_pass",  //
        "conv_bn_fuse_pass",                         //
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
        "conv_elementwise_add_act_fuse_pass",   //
        "conv_elementwise_add2_act_fuse_pass",  //
        "conv_elementwise_add_fuse_pass",       //
N
nhzlx 已提交
101 102
#endif                                          //
        "transpose_flatten_concat_fuse_pass",
103 104 105 106 107
  });

  use_gpu_ = true;
}

W
Wojciech Uss 已提交
108 109
void GpuPassStrategy::EnableMKLDNN() {
  LOG(ERROR) << "GPU not support MKLDNN yet";
110 111
}

W
Wojciech Uss 已提交
112 113
void GpuPassStrategy::EnableMkldnnQuantizer() {
  LOG(ERROR) << "GPU not support MKL-DNN quantization";
Y
Yan Chunwei 已提交
114 115
}

116 117 118 119
CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
  // NOTE the large fusions should be located in the front, so that they will
  // not be damaged by smaller ones.
  passes_.assign({
120 121 122 123 124
      "infer_clean_graph_pass",  //
      // TODO(luotao): runtime_context_cache_pass should be located in the
      // front, see https://github.com/PaddlePaddle/Paddle/issues/16609,
      // will enhance this pass later.
      "runtime_context_cache_pass",     //
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
      "attention_lstm_fuse_pass",       //
      "seqpool_concat_fuse_pass",       //
      "seqconv_eltadd_relu_fuse_pass",  //
      // "embedding_fc_lstm_fuse_pass", //
      "fc_lstm_fuse_pass",             //
      "mul_lstm_fuse_pass",            //
      "fc_gru_fuse_pass",              //
      "mul_gru_fuse_pass",             //
      "seq_concat_fc_fuse_pass",       //
      "fc_fuse_pass",                  //
      "repeated_fc_relu_fuse_pass",    //
      "squared_mat_sub_fuse_pass",     //
      "conv_bn_fuse_pass",             //
      "conv_eltwiseadd_bn_fuse_pass",  //
      "is_test_pass",                  //
  });
  use_gpu_ = false;
}
W
Wojciech Uss 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

void CpuPassStrategy::EnableMKLDNN() {
// TODO(Superjomn) Consider the way to mix CPU with GPU.
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_) {
    passes_.insert(passes_.begin(), "mkldnn_placement_pass");

    for (auto &pass : std::vector<std::string>(
             {"depthwise_conv_mkldnn_pass",    //
              "conv_bn_fuse_pass",             // Execute BN passes again to
              "conv_eltwiseadd_bn_fuse_pass",  // preserve correct pass order
              "conv_bias_mkldnn_fuse_pass",    //
              "conv3d_bias_mkldnn_fuse_pass",  //
              "conv_elementwise_add_mkldnn_fuse_pass",
              "conv_relu_mkldnn_fuse_pass"})) {
      passes_.push_back(pass);
    }
  }
  use_mkldnn_ = true;
#else
  use_mkldnn_ = false;
#endif
}

void CpuPassStrategy::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_quantizer_) {
    passes_.push_back("cpu_quantize_placement_pass");
  }
  use_mkldnn_quantizer_ = true;
#else
  use_mkldnn_quantizer_ = false;
#endif
}

178
}  // namespace paddle