detection_map_op.h 17.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17 18 19 20
#include <algorithm>
#include <map>
#include <string>
#include <utility>
#include <vector>
W
wanghaox 已提交
21 22
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
W
wanghaox 已提交
23 24 25 26

namespace paddle {
namespace operators {

W
wanghaox 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
enum APType { kNone = 0, kIntegral, k11point };

APType GetAPType(std::string str) {
  if (str == "integral") {
    return APType::kIntegral;
  } else if (str == "11point") {
    return APType::k11point;
  } else {
    return APType::kNone;
  }
}

template <typename T>
inline bool SortScorePairDescend(const std::pair<float, T>& pair1,
                                 const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

W
wanghaox 已提交
45 46 47
template <typename T>
inline void GetAccumulation(std::vector<std::pair<T, int>> in_pairs,
                            std::vector<int>* accu_vec) {
W
wanghaox 已提交
48
  std::stable_sort(in_pairs.begin(), in_pairs.end(), SortScorePairDescend<int>);
W
wanghaox 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61
  accu_vec->clear();
  size_t sum = 0;
  for (size_t i = 0; i < in_pairs.size(); ++i) {
    auto count = in_pairs[i].second;
    sum += count;
    accu_vec->push_back(sum);
  }
}

template <typename Place, typename T>
class DetectionMAPOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
W
wanghaox 已提交
62
    auto* in_detect = ctx.Input<framework::LoDTensor>("DetectRes");
W
wanghaox 已提交
63 64
    auto* in_label = ctx.Input<framework::LoDTensor>("Label");
    auto* out_map = ctx.Output<framework::Tensor>("MAP");
W
wanghaox 已提交
65

W
wanghaox 已提交
66 67 68 69
    auto* in_pos_count = ctx.Input<framework::Tensor>("PosCount");
    auto* in_true_pos = ctx.Input<framework::LoDTensor>("TruePos");
    auto* in_false_pos = ctx.Input<framework::LoDTensor>("FalsePos");

W
wanghaox 已提交
70 71 72
    auto* out_pos_count = ctx.Output<framework::Tensor>("AccumPosCount");
    auto* out_true_pos = ctx.Output<framework::LoDTensor>("AccumTruePos");
    auto* out_false_pos = ctx.Output<framework::LoDTensor>("AccumFalsePos");
W
wanghaox 已提交
73

W
wanghaox 已提交
74
    float overlap_threshold = ctx.Attr<float>("overlap_threshold");
75
    bool evaluate_difficult = ctx.Attr<bool>("evaluate_difficult");
W
wanghaox 已提交
76
    auto ap_type = GetAPType(ctx.Attr<std::string>("ap_type"));
77
    int class_num = ctx.Attr<int>("class_num");
W
wanghaox 已提交
78

79 80
    auto label_lod = in_label->lod();
    auto detect_lod = in_detect->lod();
W
wanghaox 已提交
81 82
    PADDLE_ENFORCE_EQ(label_lod.size(), 1UL,
                      "Only support one level sequence now.");
W
wanghaox 已提交
83 84 85 86 87 88 89
    PADDLE_ENFORCE_EQ(label_lod[0].size(), detect_lod[0].size(),
                      "The batch_size of input(Label) and input(Detection) "
                      "must be the same.");

    std::vector<std::map<int, std::vector<Box>>> gt_boxes;
    std::vector<std::map<int, std::vector<std::pair<T, Box>>>> detect_boxes;

90
    GetBoxes(*in_label, *in_detect, &gt_boxes, detect_boxes);
W
wanghaox 已提交
91 92 93 94 95

    std::map<int, int> label_pos_count;
    std::map<int, std::vector<std::pair<T, int>>> true_pos;
    std::map<int, std::vector<std::pair<T, int>>> false_pos;

96 97 98 99 100 101 102
    auto* has_state = ctx.Input<framework::LoDTensor>("HasState");
    int state = 0;
    if (has_state) {
      state = has_state->data<int>()[0];
    }

    if (in_pos_count != nullptr && state) {
103 104
      GetInputPos(*in_pos_count, *in_true_pos, *in_false_pos, &label_pos_count,
                  &true_pos, &false_pos, class_num);
W
wanghaox 已提交
105 106
    }

W
wanghaox 已提交
107
    CalcTrueAndFalsePositive(gt_boxes, detect_boxes, evaluate_difficult,
108 109
                             overlap_threshold, &label_pos_count, &true_pos,
                             &false_pos);
W
wanghaox 已提交
110

111 112 113
    int background_label = ctx.Attr<int>("background_label");
    T map = CalcMAP(ap_type, label_pos_count, true_pos, false_pos,
                    background_label);
W
wanghaox 已提交
114

115 116
    GetOutputPos(ctx, label_pos_count, true_pos, false_pos, out_pos_count,
                 out_true_pos, out_false_pos, class_num);
W
wanghaox 已提交
117

W
wanghaox 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    T* map_data = out_map->mutable_data<T>(ctx.GetPlace());
    map_data[0] = map;
  }

 protected:
  struct Box {
    Box(T xmin, T ymin, T xmax, T ymax)
        : xmin(xmin), ymin(ymin), xmax(xmax), ymax(ymax), is_difficult(false) {}

    T xmin, ymin, xmax, ymax;
    bool is_difficult;
  };

  inline T JaccardOverlap(const Box& box1, const Box& box2) const {
    if (box2.xmin > box1.xmax || box2.xmax < box1.xmin ||
        box2.ymin > box1.ymax || box2.ymax < box1.ymin) {
      return 0.0;
W
wanghaox 已提交
135
    } else {
W
wanghaox 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148
      T inter_xmin = std::max(box1.xmin, box2.xmin);
      T inter_ymin = std::max(box1.ymin, box2.ymin);
      T inter_xmax = std::min(box1.xmax, box2.xmax);
      T inter_ymax = std::min(box1.ymax, box2.ymax);

      T inter_width = inter_xmax - inter_xmin;
      T inter_height = inter_ymax - inter_ymin;
      T inter_area = inter_width * inter_height;

      T bbox_area1 = (box1.xmax - box1.xmin) * (box1.ymax - box1.ymin);
      T bbox_area2 = (box2.xmax - box2.xmin) * (box2.ymax - box2.ymin);

      return inter_area / (bbox_area1 + bbox_area2 - inter_area);
W
wanghaox 已提交
149 150 151
    }
  }

152 153 154 155 156 157 158 159 160
  inline void ClipBBox(const Box& bbox, Box* clipped_bbox) const {
    T one = static_cast<T>(1.0);
    T zero = static_cast<T>(0.0);
    clipped_bbox->xmin = std::max(std::min(bbox.xmin, one), zero);
    clipped_bbox->ymin = std::max(std::min(bbox.ymin, one), zero);
    clipped_bbox->xmax = std::max(std::min(bbox.xmax, one), zero);
    clipped_bbox->ymax = std::max(std::min(bbox.ymax, one), zero);
  }

W
wanghaox 已提交
161 162
  void GetBoxes(const framework::LoDTensor& input_label,
                const framework::LoDTensor& input_detect,
163
                std::vector<std::map<int, std::vector<Box>>>* gt_boxes,
W
wanghaox 已提交
164 165 166 167
                std::vector<std::map<int, std::vector<std::pair<T, Box>>>>&
                    detect_boxes) const {
    auto labels = framework::EigenTensor<T, 2>::From(input_label);
    auto detect = framework::EigenTensor<T, 2>::From(input_detect);
W
wanghaox 已提交
168

169 170
    auto label_lod = input_label.lod();
    auto detect_lod = input_detect.lod();
W
wanghaox 已提交
171 172

    int batch_size = label_lod[0].size() - 1;
173
    auto label_index = label_lod[0];
W
wanghaox 已提交
174

W
wanghaox 已提交
175 176
    for (int n = 0; n < batch_size; ++n) {
      std::map<int, std::vector<Box>> boxes;
Q
QI JUN 已提交
177
      for (size_t i = label_index[n]; i < label_index[n + 1]; ++i) {
W
wanghaox 已提交
178
        int label = labels(i, 0);
179 180 181 182 183 184 185 186 187 188 189 190 191
        if (input_label.dims()[1] == 6) {
          Box box(labels(i, 2), labels(i, 3), labels(i, 4), labels(i, 5));
          auto is_difficult = labels(i, 1);
          if (std::abs(is_difficult - 0.0) < 1e-6)
            box.is_difficult = false;
          else
            box.is_difficult = true;
          boxes[label].push_back(box);
        } else {
          PADDLE_ENFORCE_EQ(input_label.dims()[1], 5);
          Box box(labels(i, 1), labels(i, 2), labels(i, 3), labels(i, 4));
          boxes[label].push_back(box);
        }
W
wanghaox 已提交
192
      }
193
      gt_boxes->push_back(boxes);
W
wanghaox 已提交
194 195
    }

W
wanghaox 已提交
196 197 198
    auto detect_index = detect_lod[0];
    for (int n = 0; n < batch_size; ++n) {
      std::map<int, std::vector<std::pair<T, Box>>> boxes;
Q
QI JUN 已提交
199
      for (size_t i = detect_index[n]; i < detect_index[n + 1]; ++i) {
W
wanghaox 已提交
200 201 202 203
        Box box(detect(i, 2), detect(i, 3), detect(i, 4), detect(i, 5));
        int label = detect(i, 0);
        auto score = detect(i, 1);
        boxes[label].push_back(std::make_pair(score, box));
W
wanghaox 已提交
204
      }
W
wanghaox 已提交
205
      detect_boxes.push_back(boxes);
W
wanghaox 已提交
206 207 208
    }
  }

W
wanghaox 已提交
209 210 211 212 213
  void GetOutputPos(
      const framework::ExecutionContext& ctx,
      const std::map<int, int>& label_pos_count,
      const std::map<int, std::vector<std::pair<T, int>>>& true_pos,
      const std::map<int, std::vector<std::pair<T, int>>>& false_pos,
214 215 216
      framework::Tensor* output_pos_count,
      framework::LoDTensor* output_true_pos,
      framework::LoDTensor* output_false_pos, const int class_num) const {
W
wanghaox 已提交
217 218
    int true_pos_count = 0;
    int false_pos_count = 0;
219 220 221 222 223 224 225
    for (auto it = true_pos.begin(); it != true_pos.end(); ++it) {
      auto tp = it->second;
      true_pos_count += tp.size();
    }
    for (auto it = false_pos.begin(); it != false_pos.end(); ++it) {
      auto fp = it->second;
      false_pos_count += fp.size();
W
wanghaox 已提交
226 227
    }

228
    int* pos_count_data = output_pos_count->mutable_data<int>(
229
        framework::make_ddim({class_num, 1}), ctx.GetPlace());
230

231
    T* true_pos_data = output_true_pos->mutable_data<T>(
W
wanghaox 已提交
232
        framework::make_ddim({true_pos_count, 2}), ctx.GetPlace());
233
    T* false_pos_data = output_false_pos->mutable_data<T>(
W
wanghaox 已提交
234 235 236 237 238
        framework::make_ddim({false_pos_count, 2}), ctx.GetPlace());
    true_pos_count = 0;
    false_pos_count = 0;
    std::vector<size_t> true_pos_starts = {0};
    std::vector<size_t> false_pos_starts = {0};
239
    for (int i = 0; i < class_num; ++i) {
W
wanghaox 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
      auto it_count = label_pos_count.find(i);
      pos_count_data[i] = 0;
      if (it_count != label_pos_count.end()) {
        pos_count_data[i] = it_count->second;
      }
      auto it_true_pos = true_pos.find(i);
      if (it_true_pos != true_pos.end()) {
        const std::vector<std::pair<T, int>>& true_pos_vec =
            it_true_pos->second;
        for (const std::pair<T, int>& tp : true_pos_vec) {
          true_pos_data[true_pos_count * 2] = tp.first;
          true_pos_data[true_pos_count * 2 + 1] = static_cast<T>(tp.second);
          true_pos_count++;
        }
      }
      true_pos_starts.push_back(true_pos_count);

      auto it_false_pos = false_pos.find(i);
      if (it_false_pos != false_pos.end()) {
        const std::vector<std::pair<T, int>>& false_pos_vec =
            it_false_pos->second;
        for (const std::pair<T, int>& fp : false_pos_vec) {
          false_pos_data[false_pos_count * 2] = fp.first;
          false_pos_data[false_pos_count * 2 + 1] = static_cast<T>(fp.second);
          false_pos_count++;
        }
      }
      false_pos_starts.push_back(false_pos_count);
    }

    framework::LoD true_pos_lod;
    true_pos_lod.emplace_back(true_pos_starts);
    framework::LoD false_pos_lod;
    false_pos_lod.emplace_back(false_pos_starts);

275 276
    output_true_pos->set_lod(true_pos_lod);
    output_false_pos->set_lod(false_pos_lod);
277
    return;
W
wanghaox 已提交
278 279
  }

280 281 282
  void GetInputPos(const framework::Tensor& input_pos_count,
                   const framework::LoDTensor& input_true_pos,
                   const framework::LoDTensor& input_false_pos,
283 284 285
                   std::map<int, int>* label_pos_count,
                   std::map<int, std::vector<std::pair<T, int>>>* true_pos,
                   std::map<int, std::vector<std::pair<T, int>>>* false_pos,
286
                   const int class_num) const {
W
wanghaox 已提交
287
    const int* pos_count_data = input_pos_count.data<int>();
288
    for (int i = 0; i < class_num; ++i) {
289
      (*label_pos_count)[i] = pos_count_data[i];
W
wanghaox 已提交
290 291
    }

W
wanghaox 已提交
292 293 294
    auto SetData = [](const framework::LoDTensor& pos_tensor,
                      std::map<int, std::vector<std::pair<T, int>>>& pos) {
      const T* pos_data = pos_tensor.data<T>();
295
      auto pos_data_lod = pos_tensor.lod()[0];
296 297
      for (size_t i = 0; i < pos_data_lod.size() - 1; ++i) {
        for (size_t j = pos_data_lod[i]; j < pos_data_lod[i + 1]; ++j) {
W
wanghaox 已提交
298
          T score = pos_data[j * 2];
299
          int flag = pos_data[j * 2 + 1];
W
wanghaox 已提交
300 301
          pos[i].push_back(std::make_pair(score, flag));
        }
W
wanghaox 已提交
302
      }
W
wanghaox 已提交
303 304
    };

305 306
    SetData(input_true_pos, *true_pos);
    SetData(input_false_pos, *false_pos);
W
wanghaox 已提交
307 308 309
    return;
  }

W
wanghaox 已提交
310
  void CalcTrueAndFalsePositive(
W
wanghaox 已提交
311 312 313 314
      const std::vector<std::map<int, std::vector<Box>>>& gt_boxes,
      const std::vector<std::map<int, std::vector<std::pair<T, Box>>>>&
          detect_boxes,
      bool evaluate_difficult, float overlap_threshold,
315 316 317
      std::map<int, int>* label_pos_count,
      std::map<int, std::vector<std::pair<T, int>>>* true_pos,
      std::map<int, std::vector<std::pair<T, int>>>* false_pos) const {
W
wanghaox 已提交
318 319
    int batch_size = gt_boxes.size();
    for (int n = 0; n < batch_size; ++n) {
320 321
      auto image_gt_boxes = gt_boxes[n];
      for (auto it = image_gt_boxes.begin(); it != image_gt_boxes.end(); ++it) {
W
wanghaox 已提交
322
        size_t count = 0;
323
        auto labeled_bboxes = it->second;
W
wanghaox 已提交
324 325 326
        if (evaluate_difficult) {
          count = labeled_bboxes.size();
        } else {
327 328
          for (size_t i = 0; i < labeled_bboxes.size(); ++i)
            if (!(labeled_bboxes[i].is_difficult)) ++count;
W
wanghaox 已提交
329 330 331 332
        }
        if (count == 0) {
          continue;
        }
333
        int label = it->first;
334 335
        if (label_pos_count->find(label) == label_pos_count->end()) {
          (*label_pos_count)[label] = count;
W
wanghaox 已提交
336
        } else {
337
          (*label_pos_count)[label] += count;
W
wanghaox 已提交
338 339 340 341
        }
      }
    }

W
wanghaox 已提交
342 343 344
    for (size_t n = 0; n < detect_boxes.size(); ++n) {
      auto image_gt_boxes = gt_boxes[n];
      auto detections = detect_boxes[n];
W
wanghaox 已提交
345

W
wanghaox 已提交
346
      if (image_gt_boxes.size() == 0) {
W
wanghaox 已提交
347
        for (auto it = detections.begin(); it != detections.end(); ++it) {
W
wanghaox 已提交
348
          auto pred_boxes = it->second;
W
wanghaox 已提交
349
          int label = it->first;
W
wanghaox 已提交
350 351
          for (size_t i = 0; i < pred_boxes.size(); ++i) {
            auto score = pred_boxes[i].first;
352 353
            (*true_pos)[label].push_back(std::make_pair(score, 0));
            (*false_pos)[label].push_back(std::make_pair(score, 1));
W
wanghaox 已提交
354 355 356 357 358 359 360
          }
        }
        continue;
      }

      for (auto it = detections.begin(); it != detections.end(); ++it) {
        int label = it->first;
W
wanghaox 已提交
361 362 363 364
        auto pred_boxes = it->second;
        if (image_gt_boxes.find(label) == image_gt_boxes.end()) {
          for (size_t i = 0; i < pred_boxes.size(); ++i) {
            auto score = pred_boxes[i].first;
365 366
            (*true_pos)[label].push_back(std::make_pair(score, 0));
            (*false_pos)[label].push_back(std::make_pair(score, 1));
W
wanghaox 已提交
367 368 369 370
          }
          continue;
        }

W
wanghaox 已提交
371
        auto matched_bboxes = image_gt_boxes.find(label)->second;
W
wanghaox 已提交
372 373
        std::vector<bool> visited(matched_bboxes.size(), false);
        // Sort detections in descend order based on scores
W
wanghaox 已提交
374 375 376 377
        std::sort(pred_boxes.begin(), pred_boxes.end(),
                  SortScorePairDescend<Box>);
        for (size_t i = 0; i < pred_boxes.size(); ++i) {
          T max_overlap = -1.0;
W
wanghaox 已提交
378
          size_t max_idx = 0;
W
wanghaox 已提交
379
          auto score = pred_boxes[i].first;
W
wanghaox 已提交
380
          for (size_t j = 0; j < matched_bboxes.size(); ++j) {
381 382 383
            Box& pred_box = pred_boxes[i].second;
            ClipBBox(pred_box, &pred_box);
            T overlap = JaccardOverlap(pred_box, matched_bboxes[j]);
W
wanghaox 已提交
384 385 386 387 388 389 390 391 392 393 394
            if (overlap > max_overlap) {
              max_overlap = overlap;
              max_idx = j;
            }
          }
          if (max_overlap > overlap_threshold) {
            bool match_evaluate_difficult =
                evaluate_difficult ||
                (!evaluate_difficult && !matched_bboxes[max_idx].is_difficult);
            if (match_evaluate_difficult) {
              if (!visited[max_idx]) {
395 396
                (*true_pos)[label].push_back(std::make_pair(score, 1));
                (*false_pos)[label].push_back(std::make_pair(score, 0));
W
wanghaox 已提交
397 398
                visited[max_idx] = true;
              } else {
399 400
                (*true_pos)[label].push_back(std::make_pair(score, 0));
                (*false_pos)[label].push_back(std::make_pair(score, 1));
W
wanghaox 已提交
401 402 403
              }
            }
          } else {
404 405
            (*true_pos)[label].push_back(std::make_pair(score, 0));
            (*false_pos)[label].push_back(std::make_pair(score, 1));
W
wanghaox 已提交
406 407 408 409 410 411
          }
        }
      }
    }
  }

412 413 414 415
  T CalcMAP(APType ap_type, const std::map<int, int>& label_pos_count,
            const std::map<int, std::vector<std::pair<T, int>>>& true_pos,
            const std::map<int, std::vector<std::pair<T, int>>>& false_pos,
            const int background_label) const {
W
wanghaox 已提交
416 417 418 419 420
    T mAP = 0.0;
    int count = 0;
    for (auto it = label_pos_count.begin(); it != label_pos_count.end(); ++it) {
      int label = it->first;
      int label_num_pos = it->second;
421 422
      if (label_num_pos == background_label ||
          true_pos.find(label) == true_pos.end()) {
W
wanghaox 已提交
423
        continue;
424
      }
W
wanghaox 已提交
425 426 427 428 429 430 431
      auto label_true_pos = true_pos.find(label)->second;
      auto label_false_pos = false_pos.find(label)->second;
      // Compute average precision.
      std::vector<int> tp_sum;
      GetAccumulation<T>(label_true_pos, &tp_sum);
      std::vector<int> fp_sum;
      GetAccumulation<T>(label_false_pos, &fp_sum);
W
wanghaox 已提交
432
      std::vector<T> precision, recall;
W
wanghaox 已提交
433 434 435
      size_t num = tp_sum.size();
      // Compute Precision.
      for (size_t i = 0; i < num; ++i) {
W
wanghaox 已提交
436 437 438
        precision.push_back(static_cast<T>(tp_sum[i]) /
                            static_cast<T>(tp_sum[i] + fp_sum[i]));
        recall.push_back(static_cast<T>(tp_sum[i]) / label_num_pos);
W
wanghaox 已提交
439 440
      }
      // VOC2007 style
W
wanghaox 已提交
441 442
      if (ap_type == APType::k11point) {
        std::vector<T> max_precisions(11, 0.0);
W
wanghaox 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456
        int start_idx = num - 1;
        for (int j = 10; j >= 0; --j)
          for (int i = start_idx; i >= 0; --i) {
            if (recall[i] < j / 10.) {
              start_idx = i;
              if (j > 0) max_precisions[j - 1] = max_precisions[j];
              break;
            } else {
              if (max_precisions[j] < precision[i])
                max_precisions[j] = precision[i];
            }
          }
        for (int j = 10; j >= 0; --j) mAP += max_precisions[j] / 11;
        ++count;
W
wanghaox 已提交
457
      } else if (ap_type == APType::kIntegral) {
W
wanghaox 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
        // Nature integral
        float average_precisions = 0.;
        float prev_recall = 0.;
        for (size_t i = 0; i < num; ++i) {
          if (fabs(recall[i] - prev_recall) > 1e-6)
            average_precisions += precision[i] * fabs(recall[i] - prev_recall);
          prev_recall = recall[i];
        }
        mAP += average_precisions;
        ++count;
      } else {
        LOG(FATAL) << "Unkown ap version: " << ap_type;
      }
    }
    if (count != 0) mAP /= count;
473
    return mAP;
W
wanghaox 已提交
474 475 476 477 478
  }
};  // namespace operators

}  // namespace operators
}  // namespace paddle