visualizer.py 16.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
from PIL import Image, ImageDraw
G
Guanghua Yu 已提交
22
import cv2
23 24
import math

Q
qingqing01 已提交
25
from .colormap import colormap
C
cnn 已提交
26 27
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
Q
qingqing01 已提交
28 29 30 31 32 33 34

__all__ = ['visualize_results']


def visualize_results(image,
                      bbox_res,
                      mask_res,
G
Guanghua Yu 已提交
35
                      segm_res,
36
                      keypoint_res,
37
                      pose3d_res,
Q
qingqing01 已提交
38 39 40 41 42 43 44 45 46 47
                      im_id,
                      catid2name,
                      threshold=0.5):
    """
    Visualize bbox and mask results
    """
    if bbox_res is not None:
        image = draw_bbox(image, im_id, catid2name, bbox_res, threshold)
    if mask_res is not None:
        image = draw_mask(image, im_id, mask_res, threshold)
G
Guanghua Yu 已提交
48 49
    if segm_res is not None:
        image = draw_segm(image, im_id, catid2name, segm_res, threshold)
50 51
    if keypoint_res is not None:
        image = draw_pose(image, keypoint_res, threshold)
52 53
    if pose3d_res is not None:
        image = draw_pose3d(image, pose3d_res, threshold)
Q
qingqing01 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    return image


def draw_mask(image, im_id, segms, threshold, alpha=0.7):
    """
    Draw mask on image
    """
    mask_color_id = 0
    w_ratio = .4
    color_list = colormap(rgb=True)
    img_array = np.array(image).astype('float32')
    for dt in np.array(segms):
        if im_id != dt['image_id']:
            continue
        segm, score = dt['segmentation'], dt['score']
        if score < threshold:
            continue
        import pycocotools.mask as mask_util
        mask = mask_util.decode(segm) * 255
        color_mask = color_list[mask_color_id % len(color_list), 0:3]
        mask_color_id += 1
        for c in range(3):
            color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
        idx = np.nonzero(mask)
        img_array[idx[0], idx[1], :] *= 1.0 - alpha
        img_array[idx[0], idx[1], :] += alpha * color_mask
    return Image.fromarray(img_array.astype('uint8'))


def draw_bbox(image, im_id, catid2name, bboxes, threshold):
    """
    Draw bbox on image
    """
    draw = ImageDraw.Draw(image)

    catid2color = {}
    color_list = colormap(rgb=True)[:40]
    for dt in np.array(bboxes):
        if im_id != dt['image_id']:
            continue
        catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
        if score < threshold:
            continue

        if catid not in catid2color:
            idx = np.random.randint(len(color_list))
            catid2color[catid] = color_list[idx]
        color = tuple(catid2color[catid])

        # draw bbox
C
cnn 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        if len(bbox) == 4:
            # draw bbox
            xmin, ymin, w, h = bbox
            xmax = xmin + w
            ymax = ymin + h
            draw.line(
                [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
                 (xmin, ymin)],
                width=2,
                fill=color)
        elif len(bbox) == 8:
            x1, y1, x2, y2, x3, y3, x4, y4 = bbox
            draw.line(
                [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
                width=2,
                fill=color)
            xmin = min(x1, x2, x3, x4)
            ymin = min(y1, y2, y3, y4)
        else:
            logger.error('the shape of bbox must be [M, 4] or [M, 8]!')
Q
qingqing01 已提交
124 125 126 127 128 129 130 131 132

        # draw label
        text = "{} {:.2f}".format(catid2name[catid], score)
        tw, th = draw.textsize(text)
        draw.rectangle(
            [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
        draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))

    return image
G
Guanghua Yu 已提交
133 134


135
def save_result(save_path, results, catid2name, threshold):
C
cnn 已提交
136 137 138
    """
    save result as txt
    """
139
    img_id = int(results["im_id"])
C
cnn 已提交
140
    with open(save_path, 'w') as f:
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        if "bbox_res" in results:
            for dt in results["bbox_res"]:
                catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
                if score < threshold:
                    continue
                # each bbox result as a line
                # for rbox: classname score x1 y1 x2 y2 x3 y3 x4 y4
                # for bbox: classname score x1 y1 w h
                bbox_pred = '{} {} '.format(catid2name[catid],
                                            score) + ' '.join(
                                                [str(e) for e in bbox])
                f.write(bbox_pred + '\n')
        elif "keypoint_res" in results:
            for dt in results["keypoint_res"]:
                kpts = dt['keypoints']
                scores = dt['score']
                keypoint_pred = [img_id, scores, kpts]
                print(keypoint_pred, file=f)
        else:
            print("No valid results found, skip txt save")
C
cnn 已提交
161 162


G
Guanghua Yu 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
def draw_segm(image,
              im_id,
              catid2name,
              segms,
              threshold,
              alpha=0.7,
              draw_box=True):
    """
    Draw segmentation on image
    """
    mask_color_id = 0
    w_ratio = .4
    color_list = colormap(rgb=True)
    img_array = np.array(image).astype('float32')
    for dt in np.array(segms):
        if im_id != dt['image_id']:
            continue
        segm, score, catid = dt['segmentation'], dt['score'], dt['category_id']
        if score < threshold:
            continue
        import pycocotools.mask as mask_util
        mask = mask_util.decode(segm) * 255
        color_mask = color_list[mask_color_id % len(color_list), 0:3]
        mask_color_id += 1
        for c in range(3):
            color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
        idx = np.nonzero(mask)
        img_array[idx[0], idx[1], :] *= 1.0 - alpha
        img_array[idx[0], idx[1], :] += alpha * color_mask

        if not draw_box:
            center_y, center_x = ndimage.measurements.center_of_mass(mask)
            label_text = "{}".format(catid2name[catid])
            vis_pos = (max(int(center_x) - 10, 0), int(center_y))
            cv2.putText(img_array, label_text, vis_pos,
                        cv2.FONT_HERSHEY_COMPLEX, 0.3, (255, 255, 255))
        else:
            mask = mask_util.decode(segm) * 255
            sum_x = np.sum(mask, axis=0)
            x = np.where(sum_x > 0.5)[0]
            sum_y = np.sum(mask, axis=1)
            y = np.where(sum_y > 0.5)[0]
            x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
            cv2.rectangle(img_array, (x0, y0), (x1, y1),
                          tuple(color_mask.astype('int32').tolist()), 1)
            bbox_text = '%s %.2f' % (catid2name[catid], score)
            t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
            cv2.rectangle(img_array, (x0, y0), (x0 + t_size[0],
                                                y0 - t_size[1] - 3),
                          tuple(color_mask.astype('int32').tolist()), -1)
            cv2.putText(
                img_array,
                bbox_text, (x0, y0 - 2),
                cv2.FONT_HERSHEY_SIMPLEX,
                0.3, (0, 0, 0),
                1,
                lineType=cv2.LINE_AA)

    return Image.fromarray(img_array.astype('uint8'))
222 223


Z
zhiboniu 已提交
224 225 226 227 228 229 230
def draw_pose(image,
              results,
              visual_thread=0.6,
              save_name='pose.jpg',
              save_dir='output',
              returnimg=False,
              ids=None):
231 232 233 234 235
    try:
        import matplotlib.pyplot as plt
        import matplotlib
        plt.switch_backend('agg')
    except Exception as e:
Z
zhiboniu 已提交
236
        logger.error('Matplotlib not found, please install matplotlib.'
237 238
                     'for example: `pip install matplotlib`.')
        raise e
Z
zhiboniu 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252

    skeletons = np.array([item['keypoints'] for item in results])
    kpt_nums = 17
    if len(skeletons) > 0:
        kpt_nums = int(skeletons.shape[1] / 3)
    skeletons = skeletons.reshape(-1, kpt_nums, 3)
    if kpt_nums == 17:  #plot coco keypoint
        EDGES = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8),
                 (7, 9), (8, 10), (5, 11), (6, 12), (11, 13), (12, 14),
                 (13, 15), (14, 16), (11, 12)]
    else:  #plot mpii keypoint
        EDGES = [(0, 1), (1, 2), (3, 4), (4, 5), (2, 6), (3, 6), (6, 7), (7, 8),
                 (8, 9), (10, 11), (11, 12), (13, 14), (14, 15), (8, 12),
                 (8, 13)]
253 254 255 256 257 258 259
    NUM_EDGES = len(EDGES)

    colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
            [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
            [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
    cmap = matplotlib.cm.get_cmap('hsv')
    plt.figure()
Z
zhiboniu 已提交
260

261 262
    img = np.array(image).astype('float32')

Z
zhiboniu 已提交
263 264 265 266 267 268 269 270 271 272 273 274
    color_set = results['colors'] if 'colors' in results else None

    if 'bbox' in results and ids is None:
        bboxs = results['bbox']
        for j, rect in enumerate(bboxs):
            xmin, ymin, xmax, ymax = rect
            color = colors[0] if color_set is None else colors[color_set[j] %
                                                               len(colors)]
            cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 1)

    canvas = img.copy()
    for i in range(kpt_nums):
275 276 277
        for j in range(len(skeletons)):
            if skeletons[j][i, 2] < visual_thread:
                continue
Z
zhiboniu 已提交
278 279 280 281 282 283 284
            if ids is None:
                color = colors[i] if color_set is None else colors[color_set[j]
                                                                   %
                                                                   len(colors)]
            else:
                color = get_color(ids[j])

285 286 287 288
            cv2.circle(
                canvas,
                tuple(skeletons[j][i, 0:2].astype('int32')),
                2,
Z
zhiboniu 已提交
289
                color,
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
                thickness=-1)

    to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0)
    fig = matplotlib.pyplot.gcf()

    stickwidth = 2

    for i in range(NUM_EDGES):
        for j in range(len(skeletons)):
            edge = EDGES[i]
            if skeletons[j][edge[0], 2] < visual_thread or skeletons[j][edge[
                    1], 2] < visual_thread:
                continue

            cur_canvas = canvas.copy()
            X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]]
            Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]]
            mX = np.mean(X)
            mY = np.mean(Y)
            length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5
            angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
            polygon = cv2.ellipse2Poly((int(mY), int(mX)),
                                       (int(length / 2), stickwidth),
                                       int(angle), 0, 360, 1)
Z
zhiboniu 已提交
314 315 316 317 318 319 320
            if ids is None:
                color = colors[i] if color_set is None else colors[color_set[j]
                                                                   %
                                                                   len(colors)]
            else:
                color = get_color(ids[j])
            cv2.fillConvexPoly(cur_canvas, polygon, color)
321 322 323 324
            canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
    image = Image.fromarray(canvas.astype('uint8'))
    plt.close()
    return image
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455


def draw_pose3d(image,
                results,
                visual_thread=0.6,
                save_name='pose3d.jpg',
                save_dir='output',
                returnimg=False,
                ids=None):
    try:
        import matplotlib.pyplot as plt
        import matplotlib
        plt.switch_backend('agg')
    except Exception as e:
        logger.error('Matplotlib not found, please install matplotlib.'
                     'for example: `pip install matplotlib`.')
        raise e
    pose3d = np.array(results[0]['pose3d']) * 1000

    if pose3d.shape[0] == 24:
        joints_connectivity_dict = [
            [0, 1, 0], [1, 2, 0], [5, 4, 1], [4, 3, 1], [2, 3, 0], [2, 14, 1],
            [3, 14, 1], [14, 15, 1], [15, 16, 1], [16, 12, 1], [6, 7, 0],
            [7, 8, 0], [11, 10, 1], [10, 9, 1], [8, 12, 0], [9, 12, 1],
            [12, 19, 1], [19, 18, 1], [19, 20, 0], [19, 21, 1], [22, 20, 0],
            [23, 21, 1]
        ]
    elif pose3d.shape[0] == 14:
        joints_connectivity_dict = [
            [0, 1, 0], [1, 2, 0], [5, 4, 1], [4, 3, 1], [2, 3, 0], [2, 12, 0],
            [3, 12, 1], [6, 7, 0], [7, 8, 0], [11, 10, 1], [10, 9, 1],
            [8, 12, 0], [9, 12, 1], [12, 13, 1]
        ]
    else:
        print(
            "not defined joints number :{}, cannot visualize because unknown of joint connectivity".
            format(pose.shape[0]))
        return

    def draw3Dpose(pose3d,
                   ax,
                   lcolor="#3498db",
                   rcolor="#e74c3c",
                   add_labels=False):
        #    pose3d = orthographic_projection(pose3d, cam)
        for i in joints_connectivity_dict:
            x, y, z = [
                np.array([pose3d[i[0], j], pose3d[i[1], j]]) for j in range(3)
            ]
            ax.plot(-x, -z, -y, lw=2, c=lcolor if i[2] else rcolor)

        RADIUS = 1000
        center_xy = 2 if pose3d.shape[0] == 14 else 14
        x, y, z = pose3d[center_xy, 0], pose3d[center_xy, 1], pose3d[center_xy,
                                                                     2]
        ax.set_xlim3d([-RADIUS + x, RADIUS + x])
        ax.set_ylim3d([-RADIUS + y, RADIUS + y])
        ax.set_zlim3d([-RADIUS + z, RADIUS + z])

        ax.set_xlabel("x")
        ax.set_ylabel("y")
        ax.set_zlabel("z")

    def draw2Dpose(pose2d,
                   ax,
                   lcolor="#3498db",
                   rcolor="#e74c3c",
                   add_labels=False):
        for i in joints_connectivity_dict:
            if pose2d[i[0], 2] and pose2d[i[1], 2]:
                x, y = [
                    np.array([pose2d[i[0], j], pose2d[i[1], j]])
                    for j in range(2)
                ]
                ax.plot(x, y, 0, lw=2, c=lcolor if i[2] else rcolor)

    def draw_img_pose(pose3d,
                      pose2d=None,
                      frame=None,
                      figsize=(12, 12),
                      savepath=None):
        fig = plt.figure(figsize=figsize, dpi=80)
        # fig.clear()
        fig.tight_layout()

        ax = fig.add_subplot(221)
        if frame is not None:
            ax.imshow(frame, interpolation='nearest')
        if pose2d is not None:
            draw2Dpose(pose2d, ax)

        ax = fig.add_subplot(222, projection='3d')
        ax.view_init(45, 45)
        draw3Dpose(pose3d, ax)
        ax = fig.add_subplot(223, projection='3d')
        ax.view_init(0, 0)
        draw3Dpose(pose3d, ax)
        ax = fig.add_subplot(224, projection='3d')
        ax.view_init(0, 90)
        draw3Dpose(pose3d, ax)

        if savepath is not None:
            plt.savefig(savepath)
            plt.close()
        else:
            return fig

    def fig2data(fig):
        """
        fig = plt.figure()
        image = fig2data(fig)
        @brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it
        @param fig a matplotlib figure
        @return a numpy 3D array of RGBA values
        """
        # draw the renderer
        fig.canvas.draw()

        # Get the RGBA buffer from the figure
        w, h = fig.canvas.get_width_height()
        buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8)
        buf.shape = (w, h, 4)

        # canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
        buf = np.roll(buf, 3, axis=2)
        image = Image.frombytes("RGBA", (w, h), buf.tostring())
        return image.convert("RGB")

    fig = draw_img_pose(pose3d, frame=image)
    data = fig2data(fig)
    return data