infer.py 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import glob
21 22 23 24 25
import sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
    sys.path.append(parent_path)
26 27 28 29

import numpy as np
from PIL import Image

W
wangguanzhong 已提交
30

31 32 33 34 35
def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)

W
wangguanzhong 已提交
36

37 38 39 40 41 42
# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

43 44 45 46 47 48
from paddle import fluid

from ppdet.core.workspace import load_config, merge_config, create

from ppdet.utils.eval_utils import parse_fetches
from ppdet.utils.cli import ArgsParser
49
from ppdet.utils.check import check_gpu, check_version, check_config
50 51 52
from ppdet.utils.visualizer import visualize_results
import ppdet.utils.checkpoint as checkpoint

53 54
from ppdet.data.reader import create_reader

55 56 57 58 59 60 61 62 63 64 65 66
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def get_save_image_name(output_dir, image_path):
    """
    Get save image name from source image path.
    """
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
K
Kaipeng Deng 已提交
67
    image_name = os.path.split(image_path)[-1]
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    name, ext = os.path.splitext(image_name)
    return os.path.join(output_dir, "{}".format(name)) + ext


def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
W
wangguanzhong 已提交
85
        return [infer_img]
86

W
wangguanzhong 已提交
87
    images = set()
88 89 90 91 92 93
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
W
wangguanzhong 已提交
94 95
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)
96 97 98 99 100 101 102 103 104 105 106

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    logger.info("Found {} inference images in total.".format(len(images)))

    return images


def main():
    cfg = load_config(FLAGS.config)

    merge_config(FLAGS.opt)
107
    check_config(cfg)
108 109
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
W
wangguanzhong 已提交
110 111
    # check if paddlepaddle version is satisfied
    check_version()
112

113 114
    main_arch = cfg.architecture

115
    dataset = cfg.TestReader['dataset']
116 117

    test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
118
    dataset.set_images(test_images)
119 120 121 122 123 124 125 126 127 128

    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    model = create(main_arch)

    startup_prog = fluid.Program()
    infer_prog = fluid.Program()
    with fluid.program_guard(infer_prog, startup_prog):
        with fluid.unique_name.guard():
129 130 131
            inputs_def = cfg['TestReader']['inputs_def']
            inputs_def['iterable'] = True
            feed_vars, loader = model.build_inputs(**inputs_def)
132 133 134
            test_fetches = model.test(feed_vars)
    infer_prog = infer_prog.clone(True)

135
    reader = create_reader(cfg.TestReader, devices_num=1)
W
wangguanzhong 已提交
136
    loader.set_sample_list_generator(reader, place)
137 138 139

    exe.run(startup_prog)
    if cfg.weights:
140
        checkpoint.load_params(exe, infer_prog, cfg.weights)
141 142

    # parse infer fetches
143
    assert cfg.metric in ['COCO', 'VOC', 'OID', 'WIDERFACE'], \
144
            "unknown metric type {}".format(cfg.metric)
145
    extra_keys = []
146
    if cfg['metric'] in ['COCO', 'OID']:
147
        extra_keys = ['im_info', 'im_id', 'im_shape']
148
    if cfg['metric'] == 'VOC' or cfg['metric'] == 'WIDERFACE':
149
        extra_keys = ['im_id', 'im_shape']
150 151 152 153 154
    keys, values, _ = parse_fetches(test_fetches, infer_prog, extra_keys)

    # parse dataset category
    if cfg.metric == 'COCO':
        from ppdet.utils.coco_eval import bbox2out, mask2out, get_category_info
155 156
    if cfg.metric == 'OID':
        from ppdet.utils.oid_eval import bbox2out, get_category_info
157 158
    if cfg.metric == "VOC":
        from ppdet.utils.voc_eval import bbox2out, get_category_info
159 160
    if cfg.metric == "WIDERFACE":
        from ppdet.utils.widerface_eval_utils import bbox2out, get_category_info
161

162 163 164 165
    anno_file = dataset.get_anno()
    with_background = dataset.with_background
    use_default_label = dataset.use_default_label

166 167 168
    clsid2catid, catid2name = get_category_info(anno_file, with_background,
                                                use_default_label)

169 170 171 172 173 174
    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

175 176 177 178 179
    # use tb-paddle to log image
    if FLAGS.use_tb:
        from tb_paddle import SummaryWriter
        tb_writer = SummaryWriter(FLAGS.tb_log_dir)
        tb_image_step = 0
W
wangguanzhong 已提交
180
        tb_image_frame = 0  # each frame can display ten pictures at most. 
181

182
    imid2path = dataset.get_imid2path()
W
wangguanzhong 已提交
183
    for iter_id, data in enumerate(loader()):
184
        outs = exe.run(infer_prog,
W
wangguanzhong 已提交
185
                       feed=data,
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
                       fetch_list=values,
                       return_numpy=False)
        res = {
            k: (np.array(v), v.recursive_sequence_lengths())
            for k, v in zip(keys, outs)
        }
        logger.info('Infer iter {}'.format(iter_id))

        bbox_results = None
        mask_results = None
        if 'bbox' in res:
            bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized)
        if 'mask' in res:
            mask_results = mask2out([res], clsid2catid,
                                    model.mask_head.resolution)

        # visualize result
        im_ids = res['im_id'][0]
        for im_id in im_ids:
            image_path = imid2path[int(im_id)]
            image = Image.open(image_path).convert('RGB')
207 208 209 210 211 212 213 214 215 216

            # use tb-paddle to log original image           
            if FLAGS.use_tb:
                original_image_np = np.array(image)
                tb_writer.add_image(
                    "original/frame_{}".format(tb_image_frame),
                    original_image_np,
                    tb_image_step,
                    dataformats='HWC')

217
            image = visualize_results(image,
J
jerrywgz 已提交
218 219
                                      int(im_id), catid2name,
                                      FLAGS.draw_threshold, bbox_results,
220
                                      mask_results)
W
wangguanzhong 已提交
221

222 223 224 225 226 227 228 229 230 231 232 233 234
            # use tb-paddle to log image with bbox
            if FLAGS.use_tb:
                infer_image_np = np.array(image)
                tb_writer.add_image(
                    "bbox/frame_{}".format(tb_image_frame),
                    infer_image_np,
                    tb_image_step,
                    dataformats='HWC')
                tb_image_step += 1
                if tb_image_step % 10 == 0:
                    tb_image_step = 0
                    tb_image_frame += 1

235 236
            save_name = get_save_image_name(FLAGS.output_dir, image_path)
            logger.info("Detection bbox results save in {}".format(save_name))
J
jerrywgz 已提交
237
            image.save(save_name, quality=95)
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "--infer_dir",
        type=str,
        default=None,
        help="Directory for images to perform inference on.")
    parser.add_argument(
        "--infer_img",
        type=str,
        default=None,
        help="Image path, has higher priority over --infer_dir")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory for storing the output visualization files.")
J
jerrywgz 已提交
257 258 259 260 261
    parser.add_argument(
        "--draw_threshold",
        type=float,
        default=0.5,
        help="Threshold to reserve the result for visualization.")
262 263 264 265 266 267 268 269 270 271
    parser.add_argument(
        "--use_tb",
        type=bool,
        default=False,
        help="whether to record the data to Tensorboard.")
    parser.add_argument(
        '--tb_log_dir',
        type=str,
        default="tb_log_dir/image",
        help='Tensorboard logging directory for image.')
272 273
    FLAGS = parser.parse_args()
    main()