solov2_head.py 22.9 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant

from ppdet.modeling.layers import ConvNormLayer, MaskMatrixNMS
from ppdet.core.workspace import register

from six.moves import zip
import numpy as np

__all__ = ['SOLOv2Head']


@register
class SOLOv2MaskHead(nn.Layer):
    """
    MaskHead of SOLOv2

    Args:
        in_channels (int): The channel number of input Tensor.
        out_channels (int): The channel number of output Tensor.
        start_level (int): The position where the input starts.
        end_level (int): The position where the input ends.
        use_dcn_in_tower (bool): Whether to use dcn in tower or not.
    """

    def __init__(self,
                 in_channels=256,
                 mid_channels=128,
                 out_channels=256,
                 start_level=0,
                 end_level=3,
                 use_dcn_in_tower=False):
        super(SOLOv2MaskHead, self).__init__()
        assert start_level >= 0 and end_level >= start_level
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.mid_channels = mid_channels
        self.use_dcn_in_tower = use_dcn_in_tower
        self.range_level = end_level - start_level + 1
        # TODO: add DeformConvNorm
        conv_type = [ConvNormLayer]
        self.conv_func = conv_type[0]
        if self.use_dcn_in_tower:
            self.conv_func = conv_type[1]
        self.convs_all_levels = []
        for i in range(start_level, end_level + 1):
            conv_feat_name = 'mask_feat_head.convs_all_levels.{}'.format(i)
            conv_pre_feat = nn.Sequential()
            if i == start_level:
                conv_pre_feat.add_sublayer(
                    conv_feat_name + '.conv' + str(i),
                    self.conv_func(
                        ch_in=self.in_channels,
                        ch_out=self.mid_channels,
                        filter_size=3,
                        stride=1,
                        norm_type='gn',
                        norm_name=conv_feat_name + '.conv' + str(i) + '.gn',
                        name=conv_feat_name + '.conv' + str(i)))
                self.add_sublayer('conv_pre_feat' + str(i), conv_pre_feat)
                self.convs_all_levels.append(conv_pre_feat)
            else:
                for j in range(i):
                    ch_in = 0
                    if j == 0:
                        ch_in = self.in_channels + 2 if i == end_level else self.in_channels
                    else:
                        ch_in = self.mid_channels
                    conv_pre_feat.add_sublayer(
                        conv_feat_name + '.conv' + str(j),
                        self.conv_func(
                            ch_in=ch_in,
                            ch_out=self.mid_channels,
                            filter_size=3,
                            stride=1,
                            norm_type='gn',
                            norm_name=conv_feat_name + '.conv' + str(j) + '.gn',
                            name=conv_feat_name + '.conv' + str(j)))
                    conv_pre_feat.add_sublayer(
                        conv_feat_name + '.conv' + str(j) + 'act', nn.ReLU())
                    conv_pre_feat.add_sublayer(
                        'upsample' + str(i) + str(j),
                        nn.Upsample(
                            scale_factor=2, mode='bilinear'))
                self.add_sublayer('conv_pre_feat' + str(i), conv_pre_feat)
                self.convs_all_levels.append(conv_pre_feat)

        conv_pred_name = 'mask_feat_head.conv_pred.0'
        self.conv_pred = self.add_sublayer(
            conv_pred_name,
            self.conv_func(
                ch_in=self.mid_channels,
                ch_out=self.out_channels,
                filter_size=1,
                stride=1,
                norm_type='gn',
                norm_name=conv_pred_name + '.gn',
                name=conv_pred_name))

    def forward(self, inputs):
        """
        Get SOLOv2MaskHead output.

        Args:
            inputs(list[Tensor]): feature map from each necks with shape of [N, C, H, W]
        Returns:
            ins_pred(Tensor): Output of SOLOv2MaskHead head
        """
        feat_all_level = F.relu(self.convs_all_levels[0](inputs[0]))
        for i in range(1, self.range_level):
            input_p = inputs[i]
            if i == (self.range_level - 1):
                input_feat = input_p
                x_range = paddle.linspace(
                    -1, 1, paddle.shape(input_feat)[-1], dtype='float32')
                y_range = paddle.linspace(
                    -1, 1, paddle.shape(input_feat)[-2], dtype='float32')
                y, x = paddle.meshgrid([y_range, x_range])
                x = paddle.unsqueeze(x, [0, 1])
                y = paddle.unsqueeze(y, [0, 1])
                y = paddle.expand(
                    y, shape=[paddle.shape(input_feat)[0], 1, -1, -1])
                x = paddle.expand(
                    x, shape=[paddle.shape(input_feat)[0], 1, -1, -1])
                coord_feat = paddle.concat([x, y], axis=1)
                input_p = paddle.concat([input_p, coord_feat], axis=1)
            feat_all_level = paddle.add(feat_all_level,
                                        self.convs_all_levels[i](input_p))
        ins_pred = F.relu(self.conv_pred(feat_all_level))

        return ins_pred


@register
class SOLOv2Head(nn.Layer):
    """
    Head block for SOLOv2 network

    Args:
        num_classes (int): Number of output classes.
        in_channels (int): Number of input channels.
        seg_feat_channels (int): Num_filters of kernel & categroy branch convolution operation.
        stacked_convs (int): Times of convolution operation.
        num_grids (list[int]): List of feature map grids size.
        kernel_out_channels (int): Number of output channels in kernel branch.
        dcn_v2_stages (list): Which stage use dcn v2 in tower. It is between [0, stacked_convs).
        segm_strides (list[int]): List of segmentation area stride.
        solov2_loss (object): SOLOv2Loss instance.
        score_threshold (float): Threshold of categroy score.
        mask_nms (object): MaskMatrixNMS instance.
    """
    __inject__ = ['solov2_loss', 'mask_nms']
    __shared__ = ['num_classes']

    def __init__(self,
                 num_classes=80,
                 in_channels=256,
                 seg_feat_channels=256,
                 stacked_convs=4,
                 num_grids=[40, 36, 24, 16, 12],
                 kernel_out_channels=256,
                 dcn_v2_stages=[],
                 segm_strides=[8, 8, 16, 32, 32],
                 solov2_loss=None,
                 score_threshold=0.1,
                 mask_threshold=0.5,
                 mask_nms=None):
        super(SOLOv2Head, self).__init__()
        self.num_classes = num_classes
        self.in_channels = in_channels
        self.seg_num_grids = num_grids
        self.cate_out_channels = self.num_classes - 1
        self.seg_feat_channels = seg_feat_channels
        self.stacked_convs = stacked_convs
        self.kernel_out_channels = kernel_out_channels
        self.dcn_v2_stages = dcn_v2_stages
        self.segm_strides = segm_strides
        self.solov2_loss = solov2_loss
        self.mask_nms = mask_nms
        self.score_threshold = score_threshold
        self.mask_threshold = mask_threshold

        conv_type = [ConvNormLayer]
        self.conv_func = conv_type[0]
        self.kernel_pred_convs = []
        self.cate_pred_convs = []
        for i in range(self.stacked_convs):
            if i in self.dcn_v2_stages:
                self.conv_func = conv_type[1]
            ch_in = self.in_channels + 2 if i == 0 else self.seg_feat_channels
            kernel_conv = self.add_sublayer(
                'bbox_head.kernel_convs.' + str(i),
                self.conv_func(
                    ch_in=ch_in,
                    ch_out=self.seg_feat_channels,
                    filter_size=3,
                    stride=1,
                    norm_type='gn',
                    norm_name='bbox_head.kernel_convs.{}.gn'.format(i),
                    name='bbox_head.kernel_convs.{}'.format(i)))
            self.kernel_pred_convs.append(kernel_conv)
            ch_in = self.in_channels if i == 0 else self.seg_feat_channels
            cate_conv = self.add_sublayer(
                'bbox_head.cate_convs.' + str(i),
                self.conv_func(
                    ch_in=ch_in,
                    ch_out=self.seg_feat_channels,
                    filter_size=3,
                    stride=1,
                    norm_type='gn',
                    norm_name='bbox_head.cate_convs.{}.gn'.format(i),
                    name='bbox_head.cate_convs.{}'.format(i)))
            self.cate_pred_convs.append(cate_conv)

        self.solo_kernel = self.add_sublayer(
            'bbox_head.solo_kernel',
            nn.Conv2D(
                self.seg_feat_channels,
                self.kernel_out_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                weight_attr=ParamAttr(
                    name="bbox_head.solo_kernel.weight",
                    initializer=Normal(
                        mean=0., std=0.01)),
                bias_attr=ParamAttr(name="bbox_head.solo_kernel.bias")))
        self.solo_cate = self.add_sublayer(
            'bbox_head.solo_cate',
            nn.Conv2D(
                self.seg_feat_channels,
                self.cate_out_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                weight_attr=ParamAttr(
                    name="bbox_head.solo_cate.weight",
                    initializer=Normal(
                        mean=0., std=0.01)),
                bias_attr=ParamAttr(
                    name="bbox_head.solo_cate.bias",
                    initializer=Constant(
                        value=float(-np.log((1 - 0.01) / 0.01))))))

    def _points_nms(self, heat, kernel_size=2):
        hmax = F.max_pool2d(heat, kernel_size=kernel_size, stride=1, padding=1)
        keep = paddle.cast((hmax[:, :, :-1, :-1] == heat), 'float32')
        return heat * keep

    def _split_feats(self, feats):
        return (F.interpolate(
            feats[0],
            scale_factor=0.5,
            align_corners=False,
            align_mode=0,
            mode='bilinear'), feats[1], feats[2], feats[3], F.interpolate(
                feats[4],
                size=paddle.shape(feats[3])[-2:],
                mode='bilinear',
                align_corners=False,
                align_mode=0))

    def forward(self, input):
        """
        Get SOLOv2 head output

        Args:
            input (list): List of Tensors, output of backbone or neck stages
        Returns:
            cate_pred_list (list): Tensors of each category branch layer
            kernel_pred_list (list): Tensors of each kernel branch layer
        """
        feats = self._split_feats(input)
        cate_pred_list = []
        kernel_pred_list = []
        for idx in range(len(self.seg_num_grids)):
            cate_pred, kernel_pred = self._get_output_single(feats[idx], idx)
            cate_pred_list.append(cate_pred)
            kernel_pred_list.append(kernel_pred)

        return cate_pred_list, kernel_pred_list

    def _get_output_single(self, input, idx):
        ins_kernel_feat = input
        # CoordConv
        x_range = paddle.linspace(
            -1, 1, paddle.shape(ins_kernel_feat)[-1], dtype='float32')
        y_range = paddle.linspace(
            -1, 1, paddle.shape(ins_kernel_feat)[-2], dtype='float32')
        y, x = paddle.meshgrid([y_range, x_range])
        x = paddle.unsqueeze(x, [0, 1])
        y = paddle.unsqueeze(y, [0, 1])
        y = paddle.expand(
            y, shape=[paddle.shape(ins_kernel_feat)[0], 1, -1, -1])
        x = paddle.expand(
            x, shape=[paddle.shape(ins_kernel_feat)[0], 1, -1, -1])
        coord_feat = paddle.concat([x, y], axis=1)
        ins_kernel_feat = paddle.concat([ins_kernel_feat, coord_feat], axis=1)

        # kernel branch
        kernel_feat = ins_kernel_feat
        seg_num_grid = self.seg_num_grids[idx]
        kernel_feat = F.interpolate(
            kernel_feat,
            size=[seg_num_grid, seg_num_grid],
            mode='bilinear',
            align_corners=False,
            align_mode=0)
        cate_feat = kernel_feat[:, :-2, :, :]

        for kernel_layer in self.kernel_pred_convs:
            kernel_feat = F.relu(kernel_layer(kernel_feat))
        kernel_pred = self.solo_kernel(kernel_feat)
        # cate branch
        for cate_layer in self.cate_pred_convs:
            cate_feat = F.relu(cate_layer(cate_feat))
        cate_pred = self.solo_cate(cate_feat)

        if not self.training:
            cate_pred = self._points_nms(F.sigmoid(cate_pred), kernel_size=2)
            cate_pred = paddle.transpose(cate_pred, [0, 2, 3, 1])
        return cate_pred, kernel_pred

    def get_loss(self, cate_preds, kernel_preds, ins_pred, ins_labels,
                 cate_labels, grid_order_list, fg_num):
        """
        Get loss of network of SOLOv2.

        Args:
            cate_preds (list): Tensor list of categroy branch output.
            kernel_preds (list): Tensor list of kernel branch output.
            ins_pred (list): Tensor list of instance branch output.
            ins_labels (list): List of instance labels pre batch.
            cate_labels (list): List of categroy labels pre batch.
            grid_order_list (list): List of index in pre grid.
            fg_num (int): Number of positive samples in a mini-batch.
        Returns:
            loss_ins (Tensor): The instance loss Tensor of SOLOv2 network.
            loss_cate (Tensor): The category loss Tensor of SOLOv2 network.
        """
        batch_size = paddle.shape(grid_order_list[0])[0]
        ins_pred_list = []
        for kernel_preds_level, grid_orders_level in zip(kernel_preds,
                                                         grid_order_list):
            if grid_orders_level.shape[1] == 0:
                ins_pred_list.append(None)
                continue
            grid_orders_level = paddle.reshape(grid_orders_level, [-1])
            reshape_pred = paddle.reshape(
                kernel_preds_level,
                shape=(paddle.shape(kernel_preds_level)[0],
                       paddle.shape(kernel_preds_level)[1], -1))
            reshape_pred = paddle.transpose(reshape_pred, [0, 2, 1])
            reshape_pred = paddle.reshape(
                reshape_pred, shape=(-1, paddle.shape(reshape_pred)[2]))
            gathered_pred = paddle.gather(reshape_pred, index=grid_orders_level)
            gathered_pred = paddle.reshape(
                gathered_pred,
                shape=[batch_size, -1, paddle.shape(gathered_pred)[1]])
            cur_ins_pred = ins_pred
            cur_ins_pred = paddle.reshape(
                cur_ins_pred,
                shape=(paddle.shape(cur_ins_pred)[0],
                       paddle.shape(cur_ins_pred)[1], -1))
            ins_pred_conv = paddle.matmul(gathered_pred, cur_ins_pred)
            cur_ins_pred = paddle.reshape(
                ins_pred_conv,
                shape=(-1, paddle.shape(ins_pred)[-2],
                       paddle.shape(ins_pred)[-1]))
            ins_pred_list.append(cur_ins_pred)

        num_ins = paddle.sum(fg_num)
        cate_preds = [
            paddle.reshape(
                paddle.transpose(cate_pred, [0, 2, 3, 1]),
                shape=(-1, self.cate_out_channels)) for cate_pred in cate_preds
        ]
        flatten_cate_preds = paddle.concat(cate_preds)
        new_cate_labels = []
        for cate_label in cate_labels:
            new_cate_labels.append(paddle.reshape(cate_label, shape=[-1]))
        cate_labels = paddle.concat(new_cate_labels)

        loss_ins, loss_cate = self.solov2_loss(
            ins_pred_list, ins_labels, flatten_cate_preds, cate_labels, num_ins)

        return {'loss_ins': loss_ins, 'loss_cate': loss_cate}

    def get_prediction(self, cate_preds, kernel_preds, seg_pred, im_shape,
                       scale_factor):
        """
        Get prediction result of SOLOv2 network

        Args:
            cate_preds (list): List of Variables, output of categroy branch.
            kernel_preds (list): List of Variables, output of kernel branch.
            seg_pred (list): List of Variables, output of mask head stages.
            im_shape (Variables): [h, w] for input images.
            scale_factor (Variables): [scale, scale] for input images.
        Returns:
            seg_masks (Tensor): The prediction segmentation.
            cate_labels (Tensor): The prediction categroy label of each segmentation.
            seg_masks (Tensor): The prediction score of each segmentation.
        """
        num_levels = len(cate_preds)
        featmap_size = paddle.shape(seg_pred)[-2:]
        seg_masks_list = []
        cate_labels_list = []
        cate_scores_list = []
        cate_preds = [cate_pred * 1.0 for cate_pred in cate_preds]
        kernel_preds = [kernel_pred * 1.0 for kernel_pred in kernel_preds]
        # Currently only supports batch size == 1
        for idx in range(1):
            cate_pred_list = [
                paddle.reshape(
                    cate_preds[i][idx], shape=(-1, self.cate_out_channels))
                for i in range(num_levels)
            ]
            seg_pred_list = seg_pred
            kernel_pred_list = [
                paddle.reshape(
                    paddle.transpose(kernel_preds[i][idx], [1, 2, 0]),
                    shape=(-1, self.kernel_out_channels))
                for i in range(num_levels)
            ]
            cate_pred_list = paddle.concat(cate_pred_list, axis=0)
            kernel_pred_list = paddle.concat(kernel_pred_list, axis=0)

            seg_masks, cate_labels, cate_scores = self.get_seg_single(
                cate_pred_list, seg_pred_list, kernel_pred_list, featmap_size,
                im_shape[idx], scale_factor[idx][0])
            bbox_num = paddle.shape(cate_labels)[0]
        return seg_masks, cate_labels, cate_scores, bbox_num

    def get_seg_single(self, cate_preds, seg_preds, kernel_preds, featmap_size,
                       im_shape, scale_factor):
        h = paddle.cast(im_shape[0], 'int32')[0]
        w = paddle.cast(im_shape[1], 'int32')[0]
        upsampled_size_out = [featmap_size[0] * 4, featmap_size[1] * 4]

        y = paddle.zeros(shape=paddle.shape(cate_preds), dtype='float32')
        inds = paddle.where(cate_preds > self.score_threshold, cate_preds, y)
        inds = paddle.nonzero(inds)
        if paddle.shape(inds)[0] == 0:
            out = paddle.full(shape=[1], fill_value=-1)
            return out, out, out
        cate_preds = paddle.reshape(cate_preds, shape=[-1])
        # Prevent empty and increase fake data
        ind_a = paddle.cast(paddle.shape(kernel_preds)[0], 'int64')
        ind_b = paddle.zeros(shape=[1], dtype='int64')
        inds_end = paddle.unsqueeze(paddle.concat([ind_a, ind_b]), 0)
        inds = paddle.concat([inds, inds_end])
        kernel_preds_end = paddle.ones(
            shape=[1, self.kernel_out_channels], dtype='float32')
        kernel_preds = paddle.concat([kernel_preds, kernel_preds_end])
        cate_preds = paddle.concat(
            [cate_preds, paddle.zeros(
                shape=[1], dtype='float32')])

        # cate_labels & kernel_preds
        cate_labels = inds[:, 1]
        kernel_preds = paddle.gather(kernel_preds, index=inds[:, 0])
        cate_score_idx = paddle.add(inds[:, 0] * 80, cate_labels)
        cate_scores = paddle.gather(cate_preds, index=cate_score_idx)

        size_trans = np.power(self.seg_num_grids, 2)
        strides = []
        for _ind in range(len(self.segm_strides)):
            strides.append(
                paddle.full(
                    shape=[int(size_trans[_ind])],
                    fill_value=self.segm_strides[_ind],
                    dtype="int32"))
        strides = paddle.concat(strides)
        strides = paddle.gather(strides, index=inds[:, 0])

        # mask encoding.
        kernel_preds = paddle.unsqueeze(kernel_preds, [2, 3])
        seg_preds = F.conv2d(seg_preds, kernel_preds)
        seg_preds = F.sigmoid(paddle.squeeze(seg_preds, [0]))
        seg_masks = seg_preds > self.mask_threshold
        seg_masks = paddle.cast(seg_masks, 'float32')
        sum_masks = paddle.sum(seg_masks, axis=[1, 2])

        y = paddle.zeros(shape=paddle.shape(sum_masks), dtype='float32')
        keep = paddle.where(sum_masks > strides, sum_masks, y)
        keep = paddle.nonzero(keep)
        keep = paddle.squeeze(keep, axis=[1])
        # Prevent empty and increase fake data
        keep_other = paddle.concat(
            [keep, paddle.cast(paddle.shape(sum_masks)[0] - 1, 'int64')])
        keep_scores = paddle.concat(
            [keep, paddle.cast(paddle.shape(sum_masks)[0], 'int64')])
        cate_scores_end = paddle.zeros(shape=[1], dtype='float32')
        cate_scores = paddle.concat([cate_scores, cate_scores_end])

        seg_masks = paddle.gather(seg_masks, index=keep_other)
        seg_preds = paddle.gather(seg_preds, index=keep_other)
        sum_masks = paddle.gather(sum_masks, index=keep_other)
        cate_labels = paddle.gather(cate_labels, index=keep_other)
        cate_scores = paddle.gather(cate_scores, index=keep_scores)

        # mask scoring.
        seg_mul = paddle.cast(seg_preds * seg_masks, 'float32')
        seg_scores = paddle.sum(seg_mul, axis=[1, 2]) / sum_masks
        cate_scores *= seg_scores
        # Matrix NMS
        seg_preds, cate_scores, cate_labels = self.mask_nms(
            seg_preds, seg_masks, cate_labels, cate_scores, sum_masks=sum_masks)
        ori_shape = im_shape[:2] / scale_factor + 0.5
        ori_shape = paddle.cast(ori_shape, 'int32')
        seg_preds = F.interpolate(
            paddle.unsqueeze(seg_preds, 0),
            size=upsampled_size_out,
            mode='bilinear',
            align_corners=False,
            align_mode=0)
        seg_preds = paddle.slice(
            seg_preds, axes=[2, 3], starts=[0, 0], ends=[h, w])
        seg_masks = paddle.squeeze(
            F.interpolate(
                seg_preds,
                size=ori_shape[:2],
                mode='bilinear',
                align_corners=False,
                align_mode=0),
            axis=[0])
        # TODO: support bool type
        seg_masks = paddle.cast(seg_masks > self.mask_threshold, 'int32')
        return seg_masks, cate_labels, cate_scores