coco.py 6.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import os
import numpy as np
from ppdet.core.workspace import register, serializable
from .dataset import DetDataset

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


@register
@serializable
class COCODataSet(DetDataset):
    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 data_fields=['image'],
                 sample_num=-1):
        super(COCODataSet, self).__init__(dataset_dir, image_dir, anno_path,
                                          data_fields, sample_num)
        self.load_image_only = False
        self.load_semantic = False

    def parse_dataset(self, with_background=True):
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        assert anno_path.endswith('.json'), \
            'invalid coco annotation file: ' + anno_path
        from pycocotools.coco import COCO
        coco = COCO(anno_path)
        img_ids = coco.getImgIds()
        cat_ids = coco.getCatIds()
        records = []
        ct = 0

        # when with_background = True, mapping category to classid, like:
        #   background:0, first_class:1, second_class:2, ...
        catid2clsid = dict({
            catid: i + int(with_background)
            for i, catid in enumerate(cat_ids)
        })
        cname2cid = dict({
            coco.loadCats(catid)[0]['name']: clsid
            for catid, clsid in catid2clsid.items()
        })

        if 'annotations' not in coco.dataset:
            self.load_image_only = True
            logger.warning('Annotation file: {} does not contains ground truth '
                           'and load image information only.'.format(anno_path))

        for img_id in img_ids:
68
            img_anno = coco.loadImgs([img_id])[0]
Q
qingqing01 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
            im_fname = img_anno['file_name']
            im_w = float(img_anno['width'])
            im_h = float(img_anno['height'])

            im_path = os.path.join(image_dir,
                                   im_fname) if image_dir else im_fname
            if not os.path.exists(im_path):
                logger.warning('Illegal image file: {}, and it will be '
                               'ignored'.format(im_path))
                continue

            if im_w < 0 or im_h < 0:
                logger.warning('Illegal width: {} or height: {} in annotation, '
                               'and im_id: {} will be ignored'.format(
                                   im_w, im_h, img_id))
                continue

            if not self.load_image_only:
87
                ins_anno_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=False)
Q
qingqing01 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
                instances = coco.loadAnns(ins_anno_ids)

                bboxes = []
                for inst in instances:
                    # check gt bbox
                    if 'bbox' not in inst.keys():
                        continue
                    else:
                        if not any(np.array(inst['bbox'])):
                            continue
                    x, y, box_w, box_h = inst['bbox']
                    x1 = max(0, x)
                    y1 = max(0, y)
                    x2 = min(im_w - 1, x1 + max(0, box_w - 1))
                    y2 = min(im_h - 1, y1 + max(0, box_h - 1))
                    if inst['area'] > 0 and x2 >= x1 and y2 >= y1:
                        inst['clean_bbox'] = [x1, y1, x2, y2]
                        bboxes.append(inst)
                    else:
                        logger.warning(
                            'Found an invalid bbox in annotations: im_id: {}, '
                            'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
                                img_id, float(inst['area']), x1, y1, x2, y2))

                num_bbox = len(bboxes)
                if num_bbox <= 0:
                    continue

                gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
                gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
                is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
                difficult = np.zeros((num_bbox, 1), dtype=np.int32)
                gt_poly = [None] * num_bbox

                has_segmentation = False
                for i, box in enumerate(bboxes):
                    catid = box['category_id']
                    gt_class[i][0] = catid2clsid[catid]
                    gt_bbox[i, :] = box['clean_bbox']
                    is_crowd[i][0] = box['iscrowd']
                    # check RLE format 
                    if 'segmentation' in box and box['iscrowd'] == 1:
                        gt_poly[i] = [[0.0, 0.0], ]
                    elif 'segmentation' in box:
                        gt_poly[i] = box['segmentation']
                        has_segmentation = True

                if has_segmentation and not any(gt_poly):
                    continue

                coco_rec = {
                    'im_file': im_path,
                    'im_id': np.array([img_id]),
                    'h': im_h,
                    'w': im_w,
                } if 'image' in self.data_fields else {}

                gt_rec = {
                    'is_crowd': is_crowd,
                    'gt_class': gt_class,
                    'gt_bbox': gt_bbox,
                    'gt_poly': gt_poly,
                }
                for k, v in gt_rec.items():
                    if k in self.data_fields:
                        coco_rec[k] = v

                # TODO: remove load_semantic
                if self.load_semantic and 'semantic' in self.data_fields:
                    seg_path = os.path.join(self.dataset_dir, 'stuffthingmaps',
                                            'train2017', im_fname[:-3] + 'png')
                    coco_rec.update({'semantic': seg_path})

            logger.debug('Load file: {}, im_id: {}, h: {}, w: {}.'.format(
                im_path, img_id, im_h, im_w))
            records.append(coco_rec)
            ct += 1
            if self.sample_num > 0 and ct >= self.sample_num:
                break
        assert len(records) > 0, 'not found any coco record in %s' % (anno_path)
        logger.debug('{} samples in file {}'.format(ct, anno_path))
        self.roidbs, self.cname2cid = records, cname2cid