nce_op.cc 10.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

W
wanghaoshuang 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

W
wanghaoshuang 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

W
wanghaoshuang 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/nce_op.h"
W
wanghaoshuang 已提交
16

17
#include <string>
Y
Yang Yang 已提交
18 19
#include <vector>

W
wanghaoshuang 已提交
20 21 22 23 24 25 26 27 28
namespace paddle {
namespace operators {

using framework::Tensor;

class NCEOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

29
  void InferShape(framework::InferShapeContext *ctx) const override {
W
wanghaoshuang 已提交
30
    PADDLE_ENFORCE(ctx->HasInput("Input"));
W
wanghaoshuang 已提交
31
    PADDLE_ENFORCE(ctx->HasInput("Label"));
W
wanghaoshuang 已提交
32 33
    PADDLE_ENFORCE(ctx->HasInput("Weight"));
    PADDLE_ENFORCE(ctx->HasOutput("Cost"));
W
wanghaoshuang 已提交
34 35 36
    PADDLE_ENFORCE(ctx->HasOutput("SampleLogits"));
    PADDLE_ENFORCE(ctx->HasOutput("SampleLabels"));

W
wanghaoshuang 已提交
37
    auto x_dims = ctx->GetInputDim("Input");
W
wanghaoshuang 已提交
38 39
    auto label_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0]);
W
wanghaoshuang 已提交
40 41 42 43
    int num_true_classes = label_dims.size() == 2 ? label_dims[1] : 1;
    if (ctx->HasInput("Bias")) {
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Weight")[0],
                        ctx->GetInputDim("Bias")[0]);
W
wanghaoshuang 已提交
44
    }
W
wanghaoshuang 已提交
45 46
    auto num_neg_samples = ctx->Attrs().Get<int>("num_neg_samples");
    auto num_total_classes = ctx->Attrs().Get<int>("num_total_classes");
W
wanghaoshuang 已提交
47 48
    std::vector<int> custom_neg_classes =
        ctx->Attrs().Get<std::vector<int>>("custom_neg_classes");
W
wanghaoshuang 已提交
49
    PADDLE_ENFORCE_EQ(num_total_classes, ctx->GetInputDim("Weight")[0]);
W
wanghaoshuang 已提交
50 51
    if (custom_neg_classes.size() > 0) {
      PADDLE_ENFORCE_EQ(custom_neg_classes.size(),
W
wanghaoshuang 已提交
52
                        static_cast<size_t>(num_neg_samples));
W
wanghaoshuang 已提交
53
    }
W
wanghaoshuang 已提交
54
    // set dims of output(Out)
W
wanghaoshuang 已提交
55
    std::vector<int64_t> out_dims;
W
wanghaoshuang 已提交
56
    out_dims.push_back(x_dims[0]);
W
wanghaoshuang 已提交
57
    out_dims.push_back(1);
W
wanghaoshuang 已提交
58
    ctx->SetOutputDim("Cost", framework::make_ddim(out_dims));
W
wanghaoshuang 已提交
59 60

    // set dims of output(SampleOut)
W
wanghaoshuang 已提交
61
    std::vector<int64_t> sample_out_dims;
W
wanghaoshuang 已提交
62
    sample_out_dims.push_back(x_dims[0]);
W
wanghaoshuang 已提交
63
    sample_out_dims.push_back(num_neg_samples + num_true_classes);
W
wanghaoshuang 已提交
64 65 66
    ctx->SetOutputDim("SampleLogits", framework::make_ddim(sample_out_dims));
    ctx->SetOutputDim("SampleLabels", framework::make_ddim(sample_out_dims));
  }
W
wanghaoshuang 已提交
67 68

 protected:
69
  framework::OpKernelType GetExpectedKernelType(
70
      const framework::ExecutionContext &ctx) const override {
W
wanghaoshuang 已提交
71 72
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
C
chengduo 已提交
73
        platform::CPUPlace());
W
wanghaoshuang 已提交
74
  }
W
wanghaoshuang 已提交
75 76 77 78
};

class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
79
  void Make() override {
W
wanghaoshuang 已提交
80
    AddInput("Input", "(Tensor) A tensor of shape [batch_size, dim].");
W
wanghaoshuang 已提交
81 82 83 84 85 86 87 88
    AddInput(
        "Label",
        "(Tensor) A tensor of shape [batch_size, num_true_class]. "
        "'num_true_class' is the number of target classes in each sample."
        "The number of target classes per sample should be same. "
        "If you have a variable number of target classes, "
        "you can pad them out to a constant number by either repeating them"
        " or by padding with an otherwise unused class.)");
W
wanghaoshuang 已提交
89 90 91
    AddInput("Weight",
             "(Tensor) A tensor of shape [num_class, dim]. 'num_class' is the "
             "total number of class.");
W
wanghaoshuang 已提交
92 93 94 95
    AddInput(
        "Bias",
        "(Tensor) A tensor of shape [num_class, 1]. 'num_class' is the total "
        "number of class. It is a dispensable input.")
W
wanghaoshuang 已提交
96 97
        .AsDispensable();
    AddInput("SampleWeight",
W
wanghaoshuang 已提交
98
             "(Tensor) A tensor of shape [batch_size, 1] storing a weight for "
W
wanghaoshuang 已提交
99 100 101
             "each sample. And it is a dispensable input. The default value of "
             "sample is 1.")
        .AsDispensable();
102 103

    AddInput(
104
        "CustomDistProbs",
105 106 107 108
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
        "The i-th element is the probsbility of the i-th class being sampled.")
        .AsDispensable();
109 110 111 112 113 114 115 116 117 118 119 120 121
    AddInput(
        "CustomDistAlias",
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
        "The i-th element is the probsbility of the i-th class being sampled.")
        .AsDispensable();
    AddInput(
        "CustomDistAliasProbs",
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
        "The i-th element is the probsbility of the i-th class being sampled.")
        .AsDispensable();

W
wanghaoshuang 已提交
122
    AddOutput("Cost",
W
wanghaoshuang 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
              "(Tensor) A tensor of shape [batch_size, 1]. Cost of samples.");
    AddOutput("SampleLogits",
              "An intermediate tensor of shape[batch_size, num_neg_samples + "
              "num_pos_samples]."
              "This tensor is output of forward kernel and used in backward "
              "kernel to compute grads."
              "Given X is  the dot product of input tensor and sampled labels' "
              "weights."
              "Then 'SampleLogits' is sigmoid(X).")
        .AsIntermediate();
    AddOutput("SampleLabels",
              "An intermediate tensor of shape[batch_size, num_neg_samples + "
              "num_pos_samples]."
              "This tensor is output of forward kernel and used in backward "
              "kernel to compute grads."
              "")
        .AsIntermediate();
140

W
wanghaoshuang 已提交
141 142 143 144
    AddAttr<int>("num_total_classes",
                 "Total number of classes in all samples.");
    AddAttr<int>("num_neg_samples",
                 "The number of negative classes. The default value is 10.")
W
wanghaoshuang 已提交
145
        .SetDefault(10);
146 147 148 149 150 151 152 153
    AddAttr<int>("sampler",
                 "(int) Which sampler to be used to sample negative class."
                 "0: Uniform; 1: LogUniform; 2: CostumDist.")
        .SetDefault(0);
    AddAttr<int>("seed",
                 "(int) The seed used in sampler. If it is 0, "
                 "the sampler will generate a seed randomly.")
        .SetDefault(0);
154 155
    AddAttr<bool>("is_sparse", "(boolean, default false) Sparse update.")
        .SetDefault(false);
156

W
wanghaoshuang 已提交
157 158 159 160
    AddAttr<std::vector<int>>("custom_neg_classes",
                              "This attribute only be used in unitest. Classes "
                              "in this list wiil be used as negative classes "
                              "for every samples. Under normal conditions, "
Y
Yang Yu 已提交
161 162
                              "user should avoid setting this attribute.")
        .SetDefault({});
W
wanghaoshuang 已提交
163
    AddComment(R"DOC(
M
minqiyang 已提交
164 165 166
Compute and return the noise-contrastive estimation training loss. See
`Noise-contrastive estimation: A new estimation principle for unnormalized
statistical models
Y
Yibing Liu 已提交
167
 <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_.
W
wanghaoshuang 已提交
168
By default this operator uses a uniform distribution for sampling.
W
wanghaoshuang 已提交
169 170 171 172
)DOC");
  }
};

173 174 175 176 177 178 179 180
class NCEOpGradDescMaker : public framework::DefaultGradOpDescMaker<true> {
  using ::paddle::framework::DefaultGradOpDescMaker<
      true>::DefaultGradOpDescMaker;

 protected:
  virtual std::string GradOpType() const { return "nce_grad"; }
};

W
wanghaoshuang 已提交
181 182 183 184
class NCEOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

185
  void InferShape(framework::InferShapeContext *ctx) const override {
W
wanghaoshuang 已提交
186 187 188 189 190 191
    PADDLE_ENFORCE(ctx->HasInput("Input"));
    PADDLE_ENFORCE(ctx->HasInput("Weight"));
    PADDLE_ENFORCE(ctx->HasInput("Cost"));
    PADDLE_ENFORCE(ctx->HasInput("SampleLogits"));
    PADDLE_ENFORCE(ctx->HasInput("SampleLabels"));
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Cost")),
W
wanghaoshuang 已提交
192
                   "The input(Out@GRAD) should not be null.");
W
wanghaoshuang 已提交
193

W
wanghaoshuang 已提交
194 195
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
W
wanghaoshuang 已提交
196 197 198 199
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }

W
wanghaoshuang 已提交
200 201
    auto w_dims = ctx->GetInputDim("Weight");
    auto w_grad_name = framework::GradVarName("Weight");
W
wanghaoshuang 已提交
202 203 204 205
    if (ctx->HasOutput(w_grad_name)) {
      ctx->SetOutputDim(w_grad_name, w_dims);
    }

W
wanghaoshuang 已提交
206
    auto bias_grad_name = framework::GradVarName("Bias");
W
wanghaoshuang 已提交
207
    if (ctx->HasOutput(bias_grad_name)) {
W
wanghaoshuang 已提交
208
      auto bias_dims = ctx->GetInputDim("Bias");
W
wanghaoshuang 已提交
209 210 211
      ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
  }
W
wanghaoshuang 已提交
212 213

 protected:
214
  framework::OpKernelType GetExpectedKernelType(
215
      const framework::ExecutionContext &ctx) const override {
W
wanghaoshuang 已提交
216 217
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
C
chengduo 已提交
218
        platform::CPUPlace());
W
wanghaoshuang 已提交
219
  }
W
wanghaoshuang 已提交
220 221
};

222 223 224 225 226 227 228 229 230 231
class NCEOpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
    auto weight_grad = op_desc.Output(framework::GradVarName("Weight")).front();
    auto bias_grad = op_desc.Output(framework::GradVarName("Bias")).front();

    auto attr = op_desc.GetAttr("is_sparse");
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
M
minqiyang 已提交
232 233
      VLOG(3) << "nce_op_grad op " << weight_grad << " and " << bias_grad
              << " is set to SelectedRows";
234 235 236 237
      block->Var(weight_grad)
          ->SetType(framework::proto::VarType::SELECTED_ROWS);
      block->Var(bias_grad)->SetType(framework::proto::VarType::SELECTED_ROWS);
    } else {
M
minqiyang 已提交
238 239
      VLOG(3) << "nce_op_grad op " << weight_grad << " and " << bias_grad
              << " is set to LoDTensor";
240 241 242 243 244 245 246 247
      block->Var(weight_grad)->SetType(framework::proto::VarType::LOD_TENSOR);
      block->Var(bias_grad)->SetType(framework::proto::VarType::LOD_TENSOR);
    }
    block->Var(weight_grad)->SetDataType(block->Var("Input")->GetDataType());
    block->Var(bias_grad)->SetDataType(block->Var("Input")->GetDataType());
  }
};

W
wanghaoshuang 已提交
248 249 250 251
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
252 253
REGISTER_OPERATOR(nce, ops::NCEOp, ops::NCEOpGradDescMaker, ops::NCEOpMaker);
REGISTER_OPERATOR(nce_grad, ops::NCEOpGrad, ops::NCEOpGradVarTypeInference);
W
wanghaoshuang 已提交
254 255
REGISTER_OP_CPU_KERNEL(nce, ops::NCEKernel<paddle::platform::CPUPlace, float>,
                       ops::NCEKernel<paddle::platform::CPUPlace, double>);
W
wanghaoshuang 已提交
256
REGISTER_OP_CPU_KERNEL(nce_grad,
W
wanghaoshuang 已提交
257 258
                       ops::NCEGradKernel<paddle::platform::CPUPlace, float>,
                       ops::NCEGradKernel<paddle::platform::CPUPlace, double>);