distill_model.py 14.6 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr

from ppdet.core.workspace import register, create, load_config
from ppdet.utils.checkpoint import load_pretrain_weight
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = [
    'DistillModel',
    'FGDDistillModel',
    'CWDDistillModel',
    'LDDistillModel',
    'PPYOLOEDistillModel',
]


@register
class DistillModel(nn.Layer):
    """
    Build common distill model.
    Args:
        cfg: The student config.
        slim_cfg: The teacher and distill config.
    """

    def __init__(self, cfg, slim_cfg):
        super(DistillModel, self).__init__()
        self.arch = cfg.architecture

        self.stu_cfg = cfg
        self.student_model = create(self.stu_cfg.architecture)
        if 'pretrain_weights' in self.stu_cfg and self.stu_cfg.pretrain_weights:
            stu_pretrain = self.stu_cfg.pretrain_weights
        else:
            stu_pretrain = None

        slim_cfg = load_config(slim_cfg)
        self.tea_cfg = slim_cfg
        self.teacher_model = create(self.tea_cfg.architecture)
        if 'pretrain_weights' in self.tea_cfg and self.tea_cfg.pretrain_weights:
            tea_pretrain = self.tea_cfg.pretrain_weights
        else:
            tea_pretrain = None
        self.distill_cfg = slim_cfg

        # load pretrain weights
        self.is_inherit = False
        if stu_pretrain:
            if self.is_inherit and tea_pretrain:
                load_pretrain_weight(self.student_model, tea_pretrain)
                logger.debug(
                    "Inheriting! loading teacher weights to student model!")
            load_pretrain_weight(self.student_model, stu_pretrain)
            logger.info("Student model has loaded pretrain weights!")
        if tea_pretrain:
            load_pretrain_weight(self.teacher_model, tea_pretrain)
            logger.info("Teacher model has loaded pretrain weights!")

        self.teacher_model.eval()
        for param in self.teacher_model.parameters():
            param.trainable = False

        self.distill_loss = self.build_loss(self.distill_cfg)

    def build_loss(self, distill_cfg):
        if 'distill_loss' in distill_cfg and distill_cfg.distill_loss:
            return create(distill_cfg.distill_loss)
        else:
            return None

    def parameters(self):
        return self.student_model.parameters()

    def forward(self, inputs):
        if self.training:
            student_loss = self.student_model(inputs)
            with paddle.no_grad():
                teacher_loss = self.teacher_model(inputs)

            loss = self.distill_loss(self.teacher_model, self.student_model)
            student_loss['distill_loss'] = loss
            student_loss['teacher_loss'] = teacher_loss['loss']
            student_loss['loss'] += student_loss['distill_loss']
            return student_loss
        else:
            return self.student_model(inputs)


@register
class FGDDistillModel(DistillModel):
    """
    Build FGD distill model.
    Args:
        cfg: The student config.
        slim_cfg: The teacher and distill config.
    """

    def __init__(self, cfg, slim_cfg):
        super(FGDDistillModel, self).__init__(cfg=cfg, slim_cfg=slim_cfg)
        assert self.arch in ['RetinaNet', 'PicoDet'
                             ], 'Unsupported arch: {}'.format(self.arch)
        self.is_inherit = True

    def build_loss(self, distill_cfg):
        assert 'distill_loss_name' in distill_cfg and distill_cfg.distill_loss_name
        assert 'distill_loss' in distill_cfg and distill_cfg.distill_loss
        loss_func = dict()
        name_list = distill_cfg.distill_loss_name
        for name in name_list:
            loss_func[name] = create(distill_cfg.distill_loss)
        return loss_func

    def forward(self, inputs):
        if self.training:
            s_body_feats = self.student_model.backbone(inputs)
            s_neck_feats = self.student_model.neck(s_body_feats)
            with paddle.no_grad():
                t_body_feats = self.teacher_model.backbone(inputs)
                t_neck_feats = self.teacher_model.neck(t_body_feats)

            loss_dict = {}
            for idx, k in enumerate(self.distill_loss):
                loss_dict[k] = self.distill_loss[k](s_neck_feats[idx],
                                                    t_neck_feats[idx], inputs)
            if self.arch == "RetinaNet":
                loss = self.student_model.head(s_neck_feats, inputs)
            elif self.arch == "PicoDet":
                head_outs = self.student_model.head(
                    s_neck_feats, self.student_model.export_post_process)
                loss_gfl = self.student_model.head.get_loss(head_outs, inputs)
                total_loss = paddle.add_n(list(loss_gfl.values()))
                loss = {}
                loss.update(loss_gfl)
                loss.update({'loss': total_loss})
            else:
                raise ValueError(f"Unsupported model {self.arch}")

            for k in loss_dict:
                loss['loss'] += loss_dict[k]
                loss[k] = loss_dict[k]
            return loss
        else:
            body_feats = self.student_model.backbone(inputs)
            neck_feats = self.student_model.neck(body_feats)
            head_outs = self.student_model.head(neck_feats)
            if self.arch == "RetinaNet":
                bbox, bbox_num = self.student_model.head.post_process(
                    head_outs, inputs['im_shape'], inputs['scale_factor'])
                return {'bbox': bbox, 'bbox_num': bbox_num}
            elif self.arch == "PicoDet":
                head_outs = self.student_model.head(
                    neck_feats, self.student_model.export_post_process)
                scale_factor = inputs['scale_factor']
                bboxes, bbox_num = self.student_model.head.post_process(
                    head_outs,
                    scale_factor,
                    export_nms=self.student_model.export_nms)
                return {'bbox': bboxes, 'bbox_num': bbox_num}
            else:
                raise ValueError(f"Unsupported model {self.arch}")


@register
class CWDDistillModel(DistillModel):
    """                                                                                                                                                    
    Build CWD distill model.                                                                                                                               
    Args:                                                                                                                                                  
        cfg: The student config.                                                                                                                           
        slim_cfg: The teacher and distill config.                                                                                                          
    """

    def __init__(self, cfg, slim_cfg):
        super(CWDDistillModel, self).__init__(cfg=cfg, slim_cfg=slim_cfg)
        assert self.arch in ['GFL', 'RetinaNet'], 'Unsupported arch: {}'.format(
            self.arch)

    def build_loss(self, distill_cfg):
        assert 'distill_loss_name' in distill_cfg and distill_cfg.distill_loss_name
        assert 'distill_loss' in distill_cfg and distill_cfg.distill_loss
        loss_func = dict()
        name_list = distill_cfg.distill_loss_name
        for name in name_list:
            loss_func[name] = create(distill_cfg.distill_loss)
        return loss_func

    def get_loss_retinanet(self, stu_fea_list, tea_fea_list, inputs):
        loss = self.student_model.head(stu_fea_list, inputs)
        distill_loss = {}
        for idx, k in enumerate(self.loss_dic):
            distill_loss[k] = self.loss_dic[k](stu_fea_list[idx],
                                               tea_fea_list[idx])

            loss['loss'] += distill_loss[k]
            loss[k] = distill_loss[k]
        return loss

    def get_loss_gfl(self, stu_fea_list, tea_fea_list, inputs):
        loss = {}
        head_outs = self.student_model.head(stu_fea_list)
        loss_gfl = self.student_model.head.get_loss(head_outs, inputs)
        loss.update(loss_gfl)
        total_loss = paddle.add_n(list(loss.values()))
        loss.update({'loss': total_loss})

        feat_loss = {}
        loss_dict = {}
        s_cls_feat, t_cls_feat = [], []
        for s_neck_f, t_neck_f in zip(stu_fea_list, tea_fea_list):
            conv_cls_feat, _ = self.student_model.head.conv_feat(s_neck_f)
            cls_score = self.student_model.head.gfl_head_cls(conv_cls_feat)
            t_conv_cls_feat, _ = self.teacher_model.head.conv_feat(t_neck_f)
            t_cls_score = self.teacher_model.head.gfl_head_cls(t_conv_cls_feat)
            s_cls_feat.append(cls_score)
            t_cls_feat.append(t_cls_score)

        for idx, k in enumerate(self.loss_dic):
            loss_dict[k] = self.loss_dic[k](s_cls_feat[idx], t_cls_feat[idx])
            feat_loss[f"neck_f_{idx}"] = self.loss_dic[k](stu_fea_list[idx],
                                                          tea_fea_list[idx])

        for k in feat_loss:
            loss['loss'] += feat_loss[k]
            loss[k] = feat_loss[k]

        for k in loss_dict:
            loss['loss'] += loss_dict[k]
            loss[k] = loss_dict[k]
        return loss

    def forward(self, inputs):
        if self.training:
            s_body_feats = self.student_model.backbone(inputs)
            s_neck_feats = self.student_model.neck(s_body_feats)
            with paddle.no_grad():
                t_body_feats = self.teacher_model.backbone(inputs)
                t_neck_feats = self.teacher_model.neck(t_body_feats)

            if self.arch == "RetinaNet":
                loss = self.get_loss_retinanet(s_neck_feats, t_neck_feats,
                                               inputs)
            elif self.arch == "GFL":
                loss = self.get_loss_gfl(s_neck_feats, t_neck_feats, inputs)
            else:
                raise ValueError(f"unsupported arch {self.arch}")
            return loss
        else:
            body_feats = self.student_model.backbone(inputs)
            neck_feats = self.student_model.neck(body_feats)
            head_outs = self.student_model.head(neck_feats)
            if self.arch == "RetinaNet":
                bbox, bbox_num = self.student_model.head.post_process(
                    head_outs, inputs['im_shape'], inputs['scale_factor'])
                return {'bbox': bbox, 'bbox_num': bbox_num}
            elif self.arch == "GFL":
                bbox_pred, bbox_num = head_outs
                output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
                return output
            else:
                raise ValueError(f"unsupported arch {self.arch}")


@register
class LDDistillModel(DistillModel):
    """
    Build LD distill model.
    Args:
        cfg: The student config.
        slim_cfg: The teacher and distill config.
    """

    def __init__(self, cfg, slim_cfg):
        super(LDDistillModel, self).__init__(cfg=cfg, slim_cfg=slim_cfg)
        assert self.arch in ['GFL'], 'Unsupported arch: {}'.format(self.arch)

    def forward(self, inputs):
        if self.training:
            s_body_feats = self.student_model.backbone(inputs)
            s_neck_feats = self.student_model.neck(s_body_feats)
            s_head_outs = self.student_model.head(s_neck_feats)
            with paddle.no_grad():
                t_body_feats = self.teacher_model.backbone(inputs)
                t_neck_feats = self.teacher_model.neck(t_body_feats)
                t_head_outs = self.teacher_model.head(t_neck_feats)

            soft_label_list = t_head_outs[0]
            soft_targets_list = t_head_outs[1]
            student_loss = self.student_model.head.get_loss(
                s_head_outs, inputs, soft_label_list, soft_targets_list)
            total_loss = paddle.add_n(list(student_loss.values()))
            student_loss['loss'] = total_loss
            return student_loss
        else:
            return self.student_model(inputs)


@register
class PPYOLOEDistillModel(DistillModel):
    """
    Build PPYOLOE distill model, only used in PPYOLOE
    Args:
        cfg: The student config.
        slim_cfg: The teacher and distill config.
    """

    def __init__(self, cfg, slim_cfg):
        super(PPYOLOEDistillModel, self).__init__(cfg=cfg, slim_cfg=slim_cfg)
        assert self.arch in ['PPYOLOE'], 'Unsupported arch: {}'.format(
            self.arch)

    def forward(self, inputs, alpha=0.125):
        if self.training:
333 334
            with paddle.no_grad():
                teacher_loss = self.teacher_model(inputs)
F
Feng Ni 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
            if hasattr(self.teacher_model.yolo_head, "assigned_labels"):
                self.student_model.yolo_head.assigned_labels, self.student_model.yolo_head.assigned_bboxes, self.student_model.yolo_head.assigned_scores, self.student_model.yolo_head.mask_positive = \
                    self.teacher_model.yolo_head.assigned_labels, self.teacher_model.yolo_head.assigned_bboxes, self.teacher_model.yolo_head.assigned_scores, self.teacher_model.yolo_head.mask_positive
                delattr(self.teacher_model.yolo_head, "assigned_labels")
                delattr(self.teacher_model.yolo_head, "assigned_bboxes")
                delattr(self.teacher_model.yolo_head, "assigned_scores")
                delattr(self.teacher_model.yolo_head, "mask_positive")
            student_loss = self.student_model(inputs)

            logits_loss, feat_loss = self.distill_loss(self.teacher_model,
                                                       self.student_model)
            det_total_loss = student_loss['loss']
            total_loss = alpha * (det_total_loss + logits_loss + feat_loss)
            student_loss['loss'] = total_loss
            student_loss['det_loss'] = det_total_loss
            student_loss['logits_loss'] = logits_loss
            student_loss['feat_loss'] = feat_loss
            return student_loss
        else:
            return self.student_model(inputs)