split_compute_test.cc 5.3 KB
Newer Older
Z
zhupengyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/split_compute.h"
#include <gtest/gtest.h>
#include <limits>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

void splite_resize_out(const lite::Tensor* din,
                       std::vector<lite::Tensor*>* dout, int axis, int num,
                       const std::vector<int>& sections) {
  for (auto out : *dout) delete out;
  dout->clear();
  auto in_dims = din->dims();
  int outs_number;
  if (num > 0) {
    outs_number = num;
  } else {
    outs_number = sections.size();
  }
  for (int i = 0; i < outs_number; i++) {
    dout->push_back(new lite::Tensor);
  }

  std::vector<lite::DDimLite> outs_dims;
  outs_dims.reserve(outs_number);

  if (num > 0) {
    int out_axis_dim = in_dims[axis] / num;
    for (int i = 0; i < outs_number; ++i) {
      auto dim = in_dims;
      dim[axis] = out_axis_dim;
      outs_dims.push_back(dim);
    }
  } else if (sections.size() > 0) {
    for (size_t i = 0; i < outs_number; ++i) {
      auto dim = in_dims;
      dim[axis] = sections[i];
      outs_dims.push_back(dim);
    }
  }

  for (int j = 0; j < outs_dims.size(); ++j) {
    (*dout)[j]->Resize(outs_dims[j]);
  }
}

template <typename dtype>
void split_compute_ref(const operators::SplitParam& param) {
  const dtype* din = param.x->mutable_data<const dtype>();
  auto& dout = param.output;
  auto in_dim = param.x->dims();
  int axis = param.axis;
  std::vector<int> in_strides(in_dim.size());
  in_strides[in_dim.size() - 1] = in_dim[in_dim.size() - 1];
  for (int i = in_dim.size() - 2; i >= 0; --i) {
    in_strides[i] = in_strides[i + 1] * in_dim[i];
  }

  int input_offset = 0;
  for (auto out : *dout) {
    auto out_dim = out->dims();
    std::vector<int> out_strides(out_dim.size());
    out_strides[out_dim.size() - 1] = out_dim[out_dim.size() - 1];
    for (int i = out_dim.size() - 2; i >= 0; --i) {
      out_strides[i] = out_strides[i + 1] * out_dim[i];
    }

    dtype* out_data = out->mutable_data<dtype>();
    int before = out_strides[0] / out_strides[axis];
    int in_after = in_strides[axis];
    int out_after = out_strides[axis];

    for (int i = 0; i < before; ++i) {
      std::memcpy(out_data + i * out_after, din + input_offset + i * in_after,
                  sizeof(dtype) * out_after);
    }
    input_offset += out_strides[axis];
  }
}

TEST(split_arm, init) {
  SplitCompute split;
  ASSERT_EQ(split.precision(), PRECISION(kFloat));
  ASSERT_EQ(split.target(), TARGET(kARM));
}

TEST(split_arm, compute) {
  SplitCompute split;
  operators::SplitParam param;

  lite::Tensor x;
  std::vector<lite::Tensor*> output;
  std::vector<lite::Tensor*> output_ref;

  for (auto n : {1, 3, 4}) {
    for (auto c : {1, 3, 4}) {
      for (auto h : {1, 3, 4}) {
        for (auto w : {1, 3, 4}) {
          for (auto axis : {0, 1, 2, 3}) {
            for (auto num : {0, 1, 2, 3}) {
              for (auto sections :
                   {std::vector<int>{1, 1, 1}, std::vector<int>{2, 2},
                    std::vector<int>{1, 2}}) {
                auto x_dim = DDim(std::vector<int64_t>({n, c, h, w}));
                x.Resize(x_dim);
                if ((num != 0 && x_dim[axis] % num != 0) ||
                    (num == 0 && x_dim[axis] % sections.size() != 0))
                  continue;
                auto* x_data = x.mutable_data<float>();
                for (int i = 0; i < x.dims().production(); i++) {
                  x_data[i] = i;
                }
                splite_resize_out(&x, &output, axis, num, sections);
                splite_resize_out(&x, &output_ref, axis, num, sections);
                param.x = &x;
                param.axis = axis;
                param.num = num;
                param.sections = &sections;
                param.output = &output;
                split.SetParam(param);
                split.Run();
                param.output = &output_ref;
                split_compute_ref<float>(param);
                for (int i = 0; i < output.size(); i++) {
                  float* output_data = output[i]->mutable_data<float>();
                  float* output_ref_data = output_ref[i]->mutable_data<float>();
                  for (int j = 0; j < output[i]->dims().production(); j++) {
                    EXPECT_NEAR(output_data[j], output_ref_data[j], 1e-5);
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}

TEST(split, retrive_op) {
  auto split =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>("split");
  ASSERT_FALSE(split.empty());
  ASSERT_TRUE(split.front());
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(split, kARM, kFloat, kNCHW, def);