pybind.cc 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <fstream>
Y
Yu Yang 已提交
17
#include <vector>
18

Y
Yu Yang 已提交
19 20 21 22 23 24 25 26 27
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
#include "paddle/pybind/tensor_bind.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

28 29 30
namespace py = pybind11;
namespace pd = paddle::framework;

Y
Yu Yang 已提交
31
USE_OP(add_two);
Q
Qiao Longfei 已提交
32
USE_OP(onehot_cross_entropy);
Y
Yu Yang 已提交
33
USE_OP_WITHOUT_KERNEL(fc);
Q
Qiao Longfei 已提交
34
USE_OP(sgd);
Q
qijun 已提交
35
USE_OP(mul);
L
liaogang 已提交
36
USE_OP(mean);
Q
qijun 已提交
37 38 39
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
Y
Yan Chunwei 已提交
40
USE_OP_WITHOUT_KERNEL(recurrent_op);
Y
Yu Yang 已提交
41

Y
Yu Yang 已提交
42 43 44 45 46 47 48 49 50 51
template <typename ClassType>
void ExposeOperator(ClassType& m) {
  m.def("infer_shape", &ClassType::type::InferShape)
      .def("run", &ClassType::type::Run)
      .def("outputs",
           [](const typename ClassType::type& op) -> std::vector<std::string> {
             return op.outputs_;
           })
      .def("__str__", &ClassType::type::DebugString);
}
Y
Yu Yang 已提交
52

53 54 55 56 57
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

58
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
59
  py::module m("core", "C++ core of PaddlePaddle");
60

Y
Yu Yang 已提交
61 62
  py::class_<pd::Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer([](pd::Tensor& self) -> py::buffer_info {
63
        return paddle::pybind::CastToPyBuffer(self);
Y
Yu Yang 已提交
64 65 66 67 68
      })
      .def("get_dims",
           [](const pd::Tensor& self) { return pd::vectorize(self.dims()); })
      .def("set_dims",
           [](pd::Tensor& self, const std::vector<int>& dim) {
F
fengjiayi 已提交
69
             self.Resize(pd::make_ddim(dim));
Y
Yu Yang 已提交
70 71 72 73 74 75 76 77 78
           })
      .def("alloc_float",
           [](pd::Tensor& self) {
             self.mutable_data<float>(paddle::platform::CPUPlace());
           })
      .def("alloc_int",
           [](pd::Tensor& self) {
             self.mutable_data<int>(paddle::platform::CPUPlace());
           })
79
      .def("set", paddle::pybind::PyTensorSetFromArray<float>)
Y
Yu Yang 已提交
80
      .def("set", paddle::pybind::PyTensorSetFromArray<int>)
Y
Yu Yang 已提交
81 82 83
      .def("shape", [](pd::Tensor& self) { return pd::vectorize(self.dims()); })
      .def("set_float_element",
           [](pd::Tensor& self, size_t offset, float f) {
Y
Yu Yang 已提交
84
             // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
85 86 87
             self.data<float>()[offset] = f;
           })
      .def("get_float_element", [](pd::Tensor& self, size_t offset) -> float {
Y
Yu Yang 已提交
88
        // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
89 90
        return self.data<float>()[offset];
      });
Y
Yu Yang 已提交
91

92 93 94 95 96 97 98 99 100 101
  py::class_<pd::Variable>(m, "Variable", R"DOC(Variable Class.

All parameter, weight, gradient are variables in Paddle.
)DOC")
      .def("is_int", [](const pd::Variable& var) { return var.IsType<int>(); })
      .def("set_int",
           [](pd::Variable& var, int val) -> void {
             *var.GetMutable<int>() = val;
           })
      .def("get_int",
Y
Yu Yang 已提交
102 103 104 105 106
           [](const pd::Variable& var) -> int { return var.Get<int>(); })
      .def("get_tensor",
           [](pd::Variable& self) -> pd::Tensor* {
             return self.GetMutable<pd::Tensor>();
           },
Y
Yan Chunwei 已提交
107 108 109 110 111
           py::return_value_policy::reference)
      .def("get_net",
           [](pd::Variable& self) -> pd::NetOp* {
             return self.GetMutable<pd::NetOp>();
           },
Y
Yu Yang 已提交
112
           py::return_value_policy::reference);
113

Y
Yu Yang 已提交
114 115 116 117 118 119 120 121 122 123 124 125
  py::class_<pd::Scope>(m, "Scope", "")
      .def("new_var",
           [](pd::Scope& self, const std::string& name) -> pd::Variable* {
             return self.NewVar(name);
           },
           py::return_value_policy::reference)
      .def("find_var", &pd::Scope::FindVar, py::return_value_policy::reference)
      .def(py::init<>())
      .def("new_scope",
           [](pd::Scope& self) -> pd::Scope* { return &self.NewScope(); },
           py::return_value_policy::reference)
      .def("drop_kids", &pd::Scope::DropKids);
126

Y
Yu Yang 已提交
127 128
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
129
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
Y
Yu Yang 已提交
130
    auto& protos = pd::OpRegistry::protos();
Y
Yu Yang 已提交
131
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
132
    for (auto it = protos.begin(); it != protos.end(); ++it) {
Y
Yu Yang 已提交
133 134
      PADDLE_ENFORCE(it->second.IsInitialized(),
                     "OpProto must all be initialized");
Y
Yu Yang 已提交
135 136
      std::string str;
      PADDLE_ENFORCE(it->second.SerializeToString(&str),
Y
Yu Yang 已提交
137
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
138
      ret_values.push_back(py::bytes(str));
Y
Yu Yang 已提交
139 140 141
    }
    return ret_values;
  });
142 143 144 145 146 147
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
      .def("empty", pd::OperatorBase::EMPTY_VAR_NAME)
      .def("temp", pd::OperatorBase::TMP_VAR_NAME);

Y
Yu Yang 已提交
148 149 150 151 152
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
      .def_static("cpu_context", []() -> paddle::platform::DeviceContext* {
        return new paddle::platform::CPUDeviceContext();
      });

Y
Yu Yang 已提交
153 154
  py::class_<pd::OperatorBase, std::shared_ptr<pd::OperatorBase>> operator_base(
      m, "Operator");
Y
Yu Yang 已提交
155

Y
Yu Yang 已提交
156
  operator_base.def_static("create", [](py::bytes protobin) {
Y
Yu Yang 已提交
157 158 159 160 161 162 163 164 165 166
    pd::OpDesc desc;
    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                   "Cannot parse user input to OpDesc");
    PADDLE_ENFORCE(desc.IsInitialized(),
                   "User OpDesc is not initialized, reason %s",
                   desc.InitializationErrorString());
    return pd::OpRegistry::CreateOp(desc);
  });
  ExposeOperator(operator_base);

Y
Yu Yang 已提交
167
  py::class_<pd::NetOp, std::shared_ptr<pd::NetOp>> net(m, "Net");
Y
Yu Yang 已提交
168 169

  net.def_static("create",
Y
Yu Yang 已提交
170 171
                 []() -> std::shared_ptr<pd::NetOp> {
                   auto retv = std::make_shared<pd::NetOp>();
Y
Yu Yang 已提交
172
                   retv->type_ = "plain_net";
Y
Yu Yang 已提交
173 174
                   return retv;
                 })
Y
Yu Yang 已提交
175
      .def("add_op", &pd::NetOp::AddOp)
Y
Yu Yang 已提交
176
      .def("add_op",
Y
Yu Yang 已提交
177 178
           [](pd::NetOp& self, const std::shared_ptr<pd::NetOp>& net) -> void {
             self.AddOp(std::static_pointer_cast<pd::OperatorBase>(net));
Y
Yu Yang 已提交
179
           })
Y
Yu Yang 已提交
180 181 182
      .def("complete_add_op", &pd::NetOp::CompleteAddOp)
      .def("complete_add_op",
           [](std::shared_ptr<pd::NetOp>& self) { self->CompleteAddOp(); });
Y
Yu Yang 已提交
183
  ExposeOperator(net);
Y
Yu Yang 已提交
184

185 186
  m.def("unique_integer", UniqueIntegerGenerator);

187
  return m.ptr();
L
Luo Tao 已提交
188
}