mot_metrics.py 50.3 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.
14

G
George Ni 已提交
15 16 17 18 19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import copy
21 22 23
import sys
import math
from collections import defaultdict
G
George Ni 已提交
24
import numpy as np
G
George Ni 已提交
25
import paddle
G
George Ni 已提交
26
import paddle.nn.functional as F
G
George Ni 已提交
27 28
from ppdet.modeling.bbox_utils import bbox_iou_np_expand
from .map_utils import ap_per_class
G
George Ni 已提交
29
from .metrics import Metric
30
from .munkres import Munkres
G
George Ni 已提交
31 32 33 34

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

35
__all__ = ['MOTEvaluator', 'MOTMetric', 'JDEDetMetric', 'KITTIMOTMetric']
G
George Ni 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55


def read_mot_results(filename, is_gt=False, is_ignore=False):
    valid_labels = {1}
    ignore_labels = {2, 7, 8, 12}
    results_dict = dict()
    if os.path.isfile(filename):
        with open(filename, 'r') as f:
            for line in f.readlines():
                linelist = line.split(',')
                if len(linelist) < 7:
                    continue
                fid = int(linelist[0])
                if fid < 1:
                    continue
                results_dict.setdefault(fid, list())

                box_size = float(linelist[4]) * float(linelist[5])

                if is_gt:
G
George Ni 已提交
56
                    if 'MOT16-' in filename or 'MOT17-' in filename or 'MOT15-' in filename or 'MOT20-' in filename:
G
George Ni 已提交
57 58 59 60 61 62
                        label = int(float(linelist[7]))
                        mark = int(float(linelist[6]))
                        if mark == 0 or label not in valid_labels:
                            continue
                    score = 1
                elif is_ignore:
G
George Ni 已提交
63
                    if 'MOT16-' in filename or 'MOT17-' in filename or 'MOT15-' in filename or 'MOT20-' in filename:
G
George Ni 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
                        label = int(float(linelist[7]))
                        vis_ratio = float(linelist[8])
                        if label not in ignore_labels and vis_ratio >= 0:
                            continue
                    else:
                        continue
                    score = 1
                else:
                    score = float(linelist[6])

                tlwh = tuple(map(float, linelist[2:6]))
                target_id = int(linelist[1])

                results_dict[fid].append((tlwh, target_id, score))
    return results_dict


"""
82
MOT dataset label list, see in https://motchallenge.net
G
George Ni 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
labels={'ped', ...			    % 1
        'person_on_vhcl', ...	% 2
        'car', ...				% 3
        'bicycle', ...			% 4
        'mbike', ...			% 5
        'non_mot_vhcl', ...		% 6
        'static_person', ...	% 7
        'distractor', ...		% 8
        'occluder', ...			% 9
        'occluder_on_grnd', ...	% 10
        'occluder_full', ...	% 11
        'reflection', ...		% 12
        'crowd' ...			    % 13
};
"""


def unzip_objs(objs):
    if len(objs) > 0:
        tlwhs, ids, scores = zip(*objs)
    else:
        tlwhs, ids, scores = [], [], []
    tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4)
    return tlwhs, ids, scores


class MOTEvaluator(object):
    def __init__(self, data_root, seq_name, data_type):
        self.data_root = data_root
        self.seq_name = seq_name
        self.data_type = data_type

        self.load_annotations()
        self.reset_accumulator()

    def load_annotations(self):
        assert self.data_type == 'mot'
        gt_filename = os.path.join(self.data_root, self.seq_name, 'gt',
                                   'gt.txt')
        self.gt_frame_dict = read_mot_results(gt_filename, is_gt=True)
        self.gt_ignore_frame_dict = read_mot_results(
            gt_filename, is_ignore=True)

    def reset_accumulator(self):
        import motmetrics as mm
        mm.lap.default_solver = 'lap'
        self.acc = mm.MOTAccumulator(auto_id=True)

    def eval_frame(self, frame_id, trk_tlwhs, trk_ids, rtn_events=False):
        import motmetrics as mm
        mm.lap.default_solver = 'lap'
        # results
        trk_tlwhs = np.copy(trk_tlwhs)
        trk_ids = np.copy(trk_ids)

        # gts
        gt_objs = self.gt_frame_dict.get(frame_id, [])
        gt_tlwhs, gt_ids = unzip_objs(gt_objs)[:2]

        # ignore boxes
        ignore_objs = self.gt_ignore_frame_dict.get(frame_id, [])
        ignore_tlwhs = unzip_objs(ignore_objs)[0]

        # remove ignored results
        keep = np.ones(len(trk_tlwhs), dtype=bool)
        iou_distance = mm.distances.iou_matrix(
            ignore_tlwhs, trk_tlwhs, max_iou=0.5)
        if len(iou_distance) > 0:
            match_is, match_js = mm.lap.linear_sum_assignment(iou_distance)
            match_is, match_js = map(lambda a: np.asarray(a, dtype=int), [match_is, match_js])
            match_ious = iou_distance[match_is, match_js]

            match_js = np.asarray(match_js, dtype=int)
            match_js = match_js[np.logical_not(np.isnan(match_ious))]
            keep[match_js] = False
            trk_tlwhs = trk_tlwhs[keep]
            trk_ids = trk_ids[keep]

        # get distance matrix
        iou_distance = mm.distances.iou_matrix(gt_tlwhs, trk_tlwhs, max_iou=0.5)

        # acc
        self.acc.update(gt_ids, trk_ids, iou_distance)

        if rtn_events and iou_distance.size > 0 and hasattr(self.acc,
                                                            'last_mot_events'):
            events = self.acc.last_mot_events  # only supported by https://github.com/longcw/py-motmetrics
        else:
            events = None
        return events

    def eval_file(self, filename):
        self.reset_accumulator()

        result_frame_dict = read_mot_results(filename, is_gt=False)
        frames = sorted(list(set(result_frame_dict.keys())))
        for frame_id in frames:
            trk_objs = result_frame_dict.get(frame_id, [])
            trk_tlwhs, trk_ids = unzip_objs(trk_objs)[:2]
            self.eval_frame(frame_id, trk_tlwhs, trk_ids, rtn_events=False)

        return self.acc

    @staticmethod
    def get_summary(accs,
                    names,
                    metrics=('mota', 'num_switches', 'idp', 'idr', 'idf1',
                             'precision', 'recall')):
        import motmetrics as mm
        mm.lap.default_solver = 'lap'
        names = copy.deepcopy(names)
        if metrics is None:
            metrics = mm.metrics.motchallenge_metrics
        metrics = copy.deepcopy(metrics)

        mh = mm.metrics.create()
        summary = mh.compute_many(
            accs, metrics=metrics, names=names, generate_overall=True)
        return summary

    @staticmethod
    def save_summary(summary, filename):
        import pandas as pd
        writer = pd.ExcelWriter(filename)
        summary.to_excel(writer)
        writer.save()
G
George Ni 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246


class MOTMetric(Metric):
    def __init__(self, save_summary=False):
        self.save_summary = save_summary
        self.MOTEvaluator = MOTEvaluator
        self.result_root = None
        self.reset()

    def reset(self):
        self.accs = []
        self.seqs = []

    def update(self, data_root, seq, data_type, result_root, result_filename):
        evaluator = self.MOTEvaluator(data_root, seq, data_type)
        self.accs.append(evaluator.eval_file(result_filename))
        self.seqs.append(seq)
        self.result_root = result_root

    def accumulate(self):
        import motmetrics as mm
        import openpyxl
        metrics = mm.metrics.motchallenge_metrics
        mh = mm.metrics.create()
        summary = self.MOTEvaluator.get_summary(self.accs, self.seqs, metrics)
        self.strsummary = mm.io.render_summary(
            summary,
            formatters=mh.formatters,
            namemap=mm.io.motchallenge_metric_names)
        if self.save_summary:
            self.MOTEvaluator.save_summary(
                summary, os.path.join(self.result_root, 'summary.xlsx'))

    def log(self):
        print(self.strsummary)

    def get_results(self):
        return self.strsummary
G
George Ni 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310


class JDEDetMetric(Metric):
    # Note this detection AP metric is different from COCOMetric or VOCMetric,
    # and the bboxes coordinates are not scaled to the original image
    def __init__(self, overlap_thresh=0.5):
        self.overlap_thresh = overlap_thresh
        self.reset()

    def reset(self):
        self.AP_accum = np.zeros(1)
        self.AP_accum_count = np.zeros(1)

    def update(self, inputs, outputs):
        bboxes = outputs['bbox'][:, 2:].numpy()
        scores = outputs['bbox'][:, 1].numpy()
        labels = outputs['bbox'][:, 0].numpy()
        bbox_lengths = outputs['bbox_num'].numpy()
        if bboxes.shape[0] == 1 and bboxes.sum() == 0.0:
            return

        gt_boxes = inputs['gt_bbox'].numpy()[0]
        gt_labels = inputs['gt_class'].numpy()[0]
        if gt_labels.shape[0] == 0:
            return

        correct = []
        detected = []
        for i in range(bboxes.shape[0]):
            obj_pred = 0
            pred_bbox = bboxes[i].reshape(1, 4)
            # Compute iou with target boxes
            iou = bbox_iou_np_expand(pred_bbox, gt_boxes, x1y1x2y2=True)[0]
            # Extract index of largest overlap
            best_i = np.argmax(iou)
            # If overlap exceeds threshold and classification is correct mark as correct
            if iou[best_i] > self.overlap_thresh and obj_pred == gt_labels[
                    best_i] and best_i not in detected:
                correct.append(1)
                detected.append(best_i)
            else:
                correct.append(0)

        # Compute Average Precision (AP) per class
        target_cls = list(gt_labels.T[0])
        AP, AP_class, R, P = ap_per_class(
            tp=correct,
            conf=scores,
            pred_cls=np.zeros_like(scores),
            target_cls=target_cls)
        self.AP_accum_count += np.bincount(AP_class, minlength=1)
        self.AP_accum += np.bincount(AP_class, minlength=1, weights=AP)

    def accumulate(self):
        logger.info("Accumulating evaluatation results...")
        self.map_stat = self.AP_accum[0] / (self.AP_accum_count[0] + 1E-16)

    def log(self):
        map_stat = 100. * self.map_stat
        logger.info("mAP({:.2f}) = {:.2f}%".format(self.overlap_thresh,
                                                   map_stat))

    def get_results(self):
        return self.map_stat
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233


"""
Following code is borrow from https://github.com/xingyizhou/CenterTrack/blob/master/src/tools/eval_kitti_track/evaluate_tracking.py
"""


class tData:
    """
        Utility class to load data.
    """
    def __init__(self,frame=-1,obj_type="unset",truncation=-1,occlusion=-1,\
                 obs_angle=-10,x1=-1,y1=-1,x2=-1,y2=-1,w=-1,h=-1,l=-1,\
                 X=-1000,Y=-1000,Z=-1000,yaw=-10,score=-1000,track_id=-1):
        """
            Constructor, initializes the object given the parameters.
        """
        self.frame = frame
        self.track_id = track_id
        self.obj_type = obj_type
        self.truncation = truncation
        self.occlusion = occlusion
        self.obs_angle = obs_angle
        self.x1 = x1
        self.y1 = y1
        self.x2 = x2
        self.y2 = y2
        self.w = w
        self.h = h
        self.l = l
        self.X = X
        self.Y = Y
        self.Z = Z
        self.yaw = yaw
        self.score = score
        self.ignored = False
        self.valid = False
        self.tracker = -1

    def __str__(self):
        attrs = vars(self)
        return '\n'.join("%s: %s" % item for item in attrs.items())


class KITTIEvaluation(object):
    """ KITTI tracking statistics (CLEAR MOT, id-switches, fragments, ML/PT/MT, precision/recall)
             MOTA	- Multi-object tracking accuracy in [0,100]
             MOTP	- Multi-object tracking precision in [0,100] (3D) / [td,100] (2D)
             MOTAL	- Multi-object tracking accuracy in [0,100] with log10(id-switches)

             id-switches - number of id switches
             fragments   - number of fragmentations

             MT, PT, ML	- number of mostly tracked, partially tracked and mostly lost trajectories

             recall	        - recall = percentage of detected targets
             precision	    - precision = percentage of correctly detected targets
             FAR		    - number of false alarms per frame
             falsepositives - number of false positives (FP)
             missed         - number of missed targets (FN)
    """
    def __init__(self, result_path, gt_path, min_overlap=0.5, max_truncation = 0,\
                min_height = 25, max_occlusion = 2, cls="car",\
                n_frames=[], seqs=[], n_sequences=0):
        # get number of sequences and
        # get number of frames per sequence from test mapping
        # (created while extracting the benchmark)
        self.gt_path = os.path.join(gt_path, "label_02")
        self.n_frames = n_frames
        self.sequence_name = seqs
        self.n_sequences = n_sequences

        self.cls = cls  # class to evaluate, i.e. pedestrian or car

        self.result_path = result_path

        # statistics and numbers for evaluation
        self.n_gt = 0  # number of ground truth detections minus ignored false negatives and true positives
        self.n_igt = 0  # number of ignored ground truth detections
        self.n_gts = [
        ]  # number of ground truth detections minus ignored false negatives and true positives PER SEQUENCE
        self.n_igts = [
        ]  # number of ground ignored truth detections PER SEQUENCE
        self.n_gt_trajectories = 0
        self.n_gt_seq = []
        self.n_tr = 0  # number of tracker detections minus ignored tracker detections
        self.n_trs = [
        ]  # number of tracker detections minus ignored tracker detections PER SEQUENCE
        self.n_itr = 0  # number of ignored tracker detections
        self.n_itrs = []  # number of ignored tracker detections PER SEQUENCE
        self.n_igttr = 0  # number of ignored ground truth detections where the corresponding associated tracker detection is also ignored
        self.n_tr_trajectories = 0
        self.n_tr_seq = []
        self.MOTA = 0
        self.MOTP = 0
        self.MOTAL = 0
        self.MODA = 0
        self.MODP = 0
        self.MODP_t = []
        self.recall = 0
        self.precision = 0
        self.F1 = 0
        self.FAR = 0
        self.total_cost = 0
        self.itp = 0  # number of ignored true positives
        self.itps = []  # number of ignored true positives PER SEQUENCE
        self.tp = 0  # number of true positives including ignored true positives!
        self.tps = [
        ]  # number of true positives including ignored true positives PER SEQUENCE
        self.fn = 0  # number of false negatives WITHOUT ignored false negatives
        self.fns = [
        ]  # number of false negatives WITHOUT ignored false negatives PER SEQUENCE
        self.ifn = 0  # number of ignored false negatives
        self.ifns = []  # number of ignored false negatives PER SEQUENCE
        self.fp = 0  # number of false positives
        # a bit tricky, the number of ignored false negatives and ignored true positives 
        # is subtracted, but if both tracker detection and ground truth detection
        # are ignored this number is added again to avoid double counting
        self.fps = []  # above PER SEQUENCE
        self.mme = 0
        self.fragments = 0
        self.id_switches = 0
        self.MT = 0
        self.PT = 0
        self.ML = 0

        self.min_overlap = min_overlap  # minimum bounding box overlap for 3rd party metrics
        self.max_truncation = max_truncation  # maximum truncation of an object for evaluation
        self.max_occlusion = max_occlusion  # maximum occlusion of an object for evaluation
        self.min_height = min_height  # minimum height of an object for evaluation
        self.n_sample_points = 500

        # this should be enough to hold all groundtruth trajectories
        # is expanded if necessary and reduced in any case
        self.gt_trajectories = [[] for x in range(self.n_sequences)]
        self.ign_trajectories = [[] for x in range(self.n_sequences)]

    def loadGroundtruth(self):
        try:
            self._loadData(self.gt_path, cls=self.cls, loading_groundtruth=True)
        except IOError:
            return False
        return True

    def loadTracker(self):
        try:
            if not self._loadData(
                    self.result_path, cls=self.cls, loading_groundtruth=False):
                return False
        except IOError:
            return False
        return True

    def _loadData(self,
                  root_dir,
                  cls,
                  min_score=-1000,
                  loading_groundtruth=False):
        """
            Generic loader for ground truth and tracking data.
            Use loadGroundtruth() or loadTracker() to load this data.
            Loads detections in KITTI format from textfiles.
        """
        # construct objectDetections object to hold detection data
        t_data = tData()
        data = []
        eval_2d = True
        eval_3d = True

        seq_data = []
        n_trajectories = 0
        n_trajectories_seq = []
        for seq, s_name in enumerate(self.sequence_name):
            i = 0
            filename = os.path.join(root_dir, "%s.txt" % s_name)
            f = open(filename, "r")

            f_data = [
                [] for x in range(self.n_frames[seq])
            ]  # current set has only 1059 entries, sufficient length is checked anyway
            ids = []
            n_in_seq = 0
            id_frame_cache = []
            for line in f:
                # KITTI tracking benchmark data format:
                # (frame,tracklet_id,objectType,truncation,occlusion,alpha,x1,y1,x2,y2,h,w,l,X,Y,Z,ry)
                line = line.strip()
                fields = line.split(" ")
                # classes that should be loaded (ignored neighboring classes)
                if "car" in cls.lower():
                    classes = ["car", "van"]
                elif "pedestrian" in cls.lower():
                    classes = ["pedestrian", "person_sitting"]
                else:
                    classes = [cls.lower()]
                classes += ["dontcare"]
                if not any([s for s in classes if s in fields[2].lower()]):
                    continue
                # get fields from table
                t_data.frame = int(float(fields[0]))  # frame
                t_data.track_id = int(float(fields[1]))  # id
                t_data.obj_type = fields[
                    2].lower()  # object type [car, pedestrian, cyclist, ...]
                t_data.truncation = int(
                    float(fields[3]))  # truncation [-1,0,1,2]
                t_data.occlusion = int(
                    float(fields[4]))  # occlusion  [-1,0,1,2]
                t_data.obs_angle = float(fields[5])  # observation angle [rad]
                t_data.x1 = float(fields[6])  # left   [px]
                t_data.y1 = float(fields[7])  # top    [px]
                t_data.x2 = float(fields[8])  # right  [px]
                t_data.y2 = float(fields[9])  # bottom [px]
                t_data.h = float(fields[10])  # height [m]
                t_data.w = float(fields[11])  # width  [m]
                t_data.l = float(fields[12])  # length [m]
                t_data.X = float(fields[13])  # X [m]
                t_data.Y = float(fields[14])  # Y [m]
                t_data.Z = float(fields[15])  # Z [m]
                t_data.yaw = float(fields[16])  # yaw angle [rad]
                if not loading_groundtruth:
                    if len(fields) == 17:
                        t_data.score = -1
                    elif len(fields) == 18:
                        t_data.score = float(fields[17])  # detection score
                    else:
                        logger.info("file is not in KITTI format")
                        return

                # do not consider objects marked as invalid
                if t_data.track_id is -1 and t_data.obj_type != "dontcare":
                    continue

                idx = t_data.frame
                # check if length for frame data is sufficient
                if idx >= len(f_data):
                    print("extend f_data", idx, len(f_data))
                    f_data += [[] for x in range(max(500, idx - len(f_data)))]
                try:
                    id_frame = (t_data.frame, t_data.track_id)
                    if id_frame in id_frame_cache and not loading_groundtruth:
                        logger.info(
                            "track ids are not unique for sequence %d: frame %d"
                            % (seq, t_data.frame))
                        logger.info(
                            "track id %d occured at least twice for this frame"
                            % t_data.track_id)
                        logger.info("Exiting...")
                        #continue # this allows to evaluate non-unique result files
                        return False
                    id_frame_cache.append(id_frame)
                    f_data[t_data.frame].append(copy.copy(t_data))
                except:
                    print(len(f_data), idx)
                    raise

                if t_data.track_id not in ids and t_data.obj_type != "dontcare":
                    ids.append(t_data.track_id)
                    n_trajectories += 1
                    n_in_seq += 1

                # check if uploaded data provides information for 2D and 3D evaluation
                if not loading_groundtruth and eval_2d is True and (
                        t_data.x1 == -1 or t_data.x2 == -1 or t_data.y1 == -1 or
                        t_data.y2 == -1):
                    eval_2d = False
                if not loading_groundtruth and eval_3d is True and (
                        t_data.X == -1000 or t_data.Y == -1000 or
                        t_data.Z == -1000):
                    eval_3d = False

            # only add existing frames
            n_trajectories_seq.append(n_in_seq)
            seq_data.append(f_data)
            f.close()

        if not loading_groundtruth:
            self.tracker = seq_data
            self.n_tr_trajectories = n_trajectories
            self.eval_2d = eval_2d
            self.eval_3d = eval_3d
            self.n_tr_seq = n_trajectories_seq
            if self.n_tr_trajectories == 0:
                return False
        else:
            # split ground truth and DontCare areas
            self.dcareas = []
            self.groundtruth = []
            for seq_idx in range(len(seq_data)):
                seq_gt = seq_data[seq_idx]
                s_g, s_dc = [], []
                for f in range(len(seq_gt)):
                    all_gt = seq_gt[f]
                    g, dc = [], []
                    for gg in all_gt:
                        if gg.obj_type == "dontcare":
                            dc.append(gg)
                        else:
                            g.append(gg)
                    s_g.append(g)
                    s_dc.append(dc)
                self.dcareas.append(s_dc)
                self.groundtruth.append(s_g)
            self.n_gt_seq = n_trajectories_seq
            self.n_gt_trajectories = n_trajectories
        return True

    def boxoverlap(self, a, b, criterion="union"):
        """
            boxoverlap computes intersection over union for bbox a and b in KITTI format.
            If the criterion is 'union', overlap = (a inter b) / a union b).
            If the criterion is 'a', overlap = (a inter b) / a, where b should be a dontcare area.
        """
        x1 = max(a.x1, b.x1)
        y1 = max(a.y1, b.y1)
        x2 = min(a.x2, b.x2)
        y2 = min(a.y2, b.y2)

        w = x2 - x1
        h = y2 - y1

        if w <= 0. or h <= 0.:
            return 0.
        inter = w * h
        aarea = (a.x2 - a.x1) * (a.y2 - a.y1)
        barea = (b.x2 - b.x1) * (b.y2 - b.y1)
        # intersection over union overlap
        if criterion.lower() == "union":
            o = inter / float(aarea + barea - inter)
        elif criterion.lower() == "a":
            o = float(inter) / float(aarea)
        else:
            raise TypeError("Unkown type for criterion")
        return o

    def compute3rdPartyMetrics(self):
        """
            Computes the metrics defined in
                - Stiefelhagen 2008: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics
                  MOTA, MOTAL, MOTP
                - Nevatia 2008: Global Data Association for Multi-Object Tracking Using Network Flows
                  MT/PT/ML
        """
        # construct Munkres object for Hungarian Method association
        hm = Munkres()
        max_cost = 1e9

        # go through all frames and associate ground truth and tracker results
        # groundtruth and tracker contain lists for every single frame containing lists of KITTI format detections
        fr, ids = 0, 0
        for seq_idx in range(len(self.groundtruth)):
            seq_gt = self.groundtruth[seq_idx]
            seq_dc = self.dcareas[seq_idx]  # don't care areas
            seq_tracker = self.tracker[seq_idx]
            seq_trajectories = defaultdict(list)
            seq_ignored = defaultdict(list)

            # statistics over the current sequence, check the corresponding
            # variable comments in __init__ to get their meaning
            seqtp = 0
            seqitp = 0
            seqfn = 0
            seqifn = 0
            seqfp = 0
            seqigt = 0
            seqitr = 0

            last_ids = [[], []]
            n_gts = 0
            n_trs = 0

            for f in range(len(seq_gt)):
                g = seq_gt[f]
                dc = seq_dc[f]

                t = seq_tracker[f]
                # counting total number of ground truth and tracker objects
                self.n_gt += len(g)
                self.n_tr += len(t)

                n_gts += len(g)
                n_trs += len(t)

                # use hungarian method to associate, using boxoverlap 0..1 as cost
                # build cost matrix
                cost_matrix = []
                this_ids = [[], []]
                for gg in g:
                    # save current ids
                    this_ids[0].append(gg.track_id)
                    this_ids[1].append(-1)
                    gg.tracker = -1
                    gg.id_switch = 0
                    gg.fragmentation = 0
                    cost_row = []
                    for tt in t:
                        # overlap == 1 is cost ==0
                        c = 1 - self.boxoverlap(gg, tt)
                        # gating for boxoverlap
                        if c <= self.min_overlap:
                            cost_row.append(c)
                        else:
                            cost_row.append(max_cost)  # = 1e9
                    cost_matrix.append(cost_row)
                    # all ground truth trajectories are initially not associated
                    # extend groundtruth trajectories lists (merge lists)
                    seq_trajectories[gg.track_id].append(-1)
                    seq_ignored[gg.track_id].append(False)

                if len(g) is 0:
                    cost_matrix = [[]]
                # associate
                association_matrix = hm.compute(cost_matrix)

                # tmp variables for sanity checks and MODP computation
                tmptp = 0
                tmpfp = 0
                tmpfn = 0
                tmpc = 0  # this will sum up the overlaps for all true positives
                tmpcs = [0] * len(
                    g)  # this will save the overlaps for all true positives
                # the reason is that some true positives might be ignored
                # later such that the corrsponding overlaps can
                # be subtracted from tmpc for MODP computation

                # mapping for tracker ids and ground truth ids
                for row, col in association_matrix:
                    # apply gating on boxoverlap
                    c = cost_matrix[row][col]
                    if c < max_cost:
                        g[row].tracker = t[col].track_id
                        this_ids[1][row] = t[col].track_id
                        t[col].valid = True
                        g[row].distance = c
                        self.total_cost += 1 - c
                        tmpc += 1 - c
                        tmpcs[row] = 1 - c
                        seq_trajectories[g[row].track_id][-1] = t[col].track_id

                        # true positives are only valid associations
                        self.tp += 1
                        tmptp += 1
                    else:
                        g[row].tracker = -1
                        self.fn += 1
                        tmpfn += 1

                # associate tracker and DontCare areas
                # ignore tracker in neighboring classes
                nignoredtracker = 0  # number of ignored tracker detections
                ignoredtrackers = dict()  # will associate the track_id with -1
                # if it is not ignored and 1 if it is
                # ignored;
                # this is used to avoid double counting ignored
                # cases, see the next loop

                for tt in t:
                    ignoredtrackers[tt.track_id] = -1
                    # ignore detection if it belongs to a neighboring class or is
                    # smaller or equal to the minimum height

                    tt_height = abs(tt.y1 - tt.y2)
                    if ((self.cls == "car" and tt.obj_type == "van") or
                        (self.cls == "pedestrian" and
                         tt.obj_type == "person_sitting") or
                            tt_height <= self.min_height) and not tt.valid:
                        nignoredtracker += 1
                        tt.ignored = True
                        ignoredtrackers[tt.track_id] = 1
                        continue
                    for d in dc:
                        overlap = self.boxoverlap(tt, d, "a")
                        if overlap > 0.5 and not tt.valid:
                            tt.ignored = True
                            nignoredtracker += 1
                            ignoredtrackers[tt.track_id] = 1
                            break

                # check for ignored FN/TP (truncation or neighboring object class)
                ignoredfn = 0  # the number of ignored false negatives
                nignoredtp = 0  # the number of ignored true positives
                nignoredpairs = 0  # the number of ignored pairs, i.e. a true positive
                # which is ignored but where the associated tracker
                # detection has already been ignored

                gi = 0
                for gg in g:
                    if gg.tracker < 0:
                        if gg.occlusion>self.max_occlusion or gg.truncation>self.max_truncation\
                                or (self.cls=="car" and gg.obj_type=="van") or (self.cls=="pedestrian" and gg.obj_type=="person_sitting"):
                            seq_ignored[gg.track_id][-1] = True
                            gg.ignored = True
                            ignoredfn += 1

                    elif gg.tracker >= 0:
                        if gg.occlusion>self.max_occlusion or gg.truncation>self.max_truncation\
                                or (self.cls=="car" and gg.obj_type=="van") or (self.cls=="pedestrian" and gg.obj_type=="person_sitting"):

                            seq_ignored[gg.track_id][-1] = True
                            gg.ignored = True
                            nignoredtp += 1

                            # if the associated tracker detection is already ignored,
                            # we want to avoid double counting ignored detections
                            if ignoredtrackers[gg.tracker] > 0:
                                nignoredpairs += 1

                            # for computing MODP, the overlaps from ignored detections
                            # are subtracted
                            tmpc -= tmpcs[gi]
                    gi += 1

                # the below might be confusion, check the comments in __init__
                # to see what the individual statistics represent

                # correct TP by number of ignored TP due to truncation
                # ignored TP are shown as tracked in visualization
                tmptp -= nignoredtp

                # count the number of ignored true positives
                self.itp += nignoredtp

                # adjust the number of ground truth objects considered
                self.n_gt -= (ignoredfn + nignoredtp)

                # count the number of ignored ground truth objects
                self.n_igt += ignoredfn + nignoredtp

                # count the number of ignored tracker objects
                self.n_itr += nignoredtracker

                # count the number of ignored pairs, i.e. associated tracker and
                # ground truth objects that are both ignored
                self.n_igttr += nignoredpairs

                # false negatives = associated gt bboxes exceding association threshold + non-associated gt bboxes
                tmpfn += len(g) - len(association_matrix) - ignoredfn
                self.fn += len(g) - len(association_matrix) - ignoredfn
                self.ifn += ignoredfn

                # false positives = tracker bboxes - associated tracker bboxes
                # mismatches (mme_t)
                tmpfp += len(
                    t) - tmptp - nignoredtracker - nignoredtp + nignoredpairs
                self.fp += len(
                    t) - tmptp - nignoredtracker - nignoredtp + nignoredpairs

                # update sequence data
                seqtp += tmptp
                seqitp += nignoredtp
                seqfp += tmpfp
                seqfn += tmpfn
                seqifn += ignoredfn
                seqigt += ignoredfn + nignoredtp
                seqitr += nignoredtracker

                # sanity checks
                # - the number of true positives minues ignored true positives
                #   should be greater or equal to 0
                # - the number of false negatives should be greater or equal to 0
                # - the number of false positives needs to be greater or equal to 0
                #   otherwise ignored detections might be counted double
                # - the number of counted true positives (plus ignored ones)
                #   and the number of counted false negatives (plus ignored ones)
                #   should match the total number of ground truth objects
                # - the number of counted true positives (plus ignored ones)
                #   and the number of counted false positives
                #   plus the number of ignored tracker detections should
                #   match the total number of tracker detections; note that
                #   nignoredpairs is subtracted here to avoid double counting
                #   of ignored detection sin nignoredtp and nignoredtracker
                if tmptp < 0:
                    print(tmptp, nignoredtp)
                    raise NameError("Something went wrong! TP is negative")
                if tmpfn < 0:
                    print(tmpfn,
                          len(g),
                          len(association_matrix), ignoredfn, nignoredpairs)
                    raise NameError("Something went wrong! FN is negative")
                if tmpfp < 0:
                    print(tmpfp,
                          len(t), tmptp, nignoredtracker, nignoredtp,
                          nignoredpairs)
                    raise NameError("Something went wrong! FP is negative")
                if tmptp + tmpfn is not len(g) - ignoredfn - nignoredtp:
                    print("seqidx", seq_idx)
                    print("frame ", f)
                    print("TP    ", tmptp)
                    print("FN    ", tmpfn)
                    print("FP    ", tmpfp)
                    print("nGT   ", len(g))
                    print("nAss  ", len(association_matrix))
                    print("ign GT", ignoredfn)
                    print("ign TP", nignoredtp)
                    raise NameError(
                        "Something went wrong! nGroundtruth is not TP+FN")
                if tmptp + tmpfp + nignoredtp + nignoredtracker - nignoredpairs is not len(
                        t):
                    print(seq_idx, f, len(t), tmptp, tmpfp)
                    print(len(association_matrix), association_matrix)
                    raise NameError(
                        "Something went wrong! nTracker is not TP+FP")

                # check for id switches or fragmentations
                for i, tt in enumerate(this_ids[0]):
                    if tt in last_ids[0]:
                        idx = last_ids[0].index(tt)
                        tid = this_ids[1][i]
                        lid = last_ids[1][idx]
                        if tid != lid and lid != -1 and tid != -1:
                            if g[i].truncation < self.max_truncation:
                                g[i].id_switch = 1
                                ids += 1
                        if tid != lid and lid != -1:
                            if g[i].truncation < self.max_truncation:
                                g[i].fragmentation = 1
                                fr += 1

                # save current index
                last_ids = this_ids
                # compute MOTP_t
                MODP_t = 1
                if tmptp != 0:
                    MODP_t = tmpc / float(tmptp)
                self.MODP_t.append(MODP_t)

            # remove empty lists for current gt trajectories
            self.gt_trajectories[seq_idx] = seq_trajectories
            self.ign_trajectories[seq_idx] = seq_ignored

            # gather statistics for "per sequence" statistics.
            self.n_gts.append(n_gts)
            self.n_trs.append(n_trs)
            self.tps.append(seqtp)
            self.itps.append(seqitp)
            self.fps.append(seqfp)
            self.fns.append(seqfn)
            self.ifns.append(seqifn)
            self.n_igts.append(seqigt)
            self.n_itrs.append(seqitr)

        # compute MT/PT/ML, fragments, idswitches for all groundtruth trajectories
        n_ignored_tr_total = 0
        for seq_idx, (
                seq_trajectories, seq_ignored
        ) in enumerate(zip(self.gt_trajectories, self.ign_trajectories)):
            if len(seq_trajectories) == 0:
                continue
            tmpMT, tmpML, tmpPT, tmpId_switches, tmpFragments = [0] * 5
            n_ignored_tr = 0
            for g, ign_g in zip(seq_trajectories.values(),
                                seq_ignored.values()):
                # all frames of this gt trajectory are ignored
                if all(ign_g):
                    n_ignored_tr += 1
                    n_ignored_tr_total += 1
                    continue
                # all frames of this gt trajectory are not assigned to any detections
                if all([this == -1 for this in g]):
                    tmpML += 1
                    self.ML += 1
                    continue
                # compute tracked frames in trajectory
                last_id = g[0]
                # first detection (necessary to be in gt_trajectories) is always tracked
                tracked = 1 if g[0] >= 0 else 0
                lgt = 0 if ign_g[0] else 1
                for f in range(1, len(g)):
                    if ign_g[f]:
                        last_id = -1
                        continue
                    lgt += 1
                    if last_id != g[f] and last_id != -1 and g[f] != -1 and g[
                            f - 1] != -1:
                        tmpId_switches += 1
                        self.id_switches += 1
                    if f < len(g) - 1 and g[f - 1] != g[
                            f] and last_id != -1 and g[f] != -1 and g[f +
                                                                      1] != -1:
                        tmpFragments += 1
                        self.fragments += 1
                    if g[f] != -1:
                        tracked += 1
                        last_id = g[f]
                # handle last frame; tracked state is handled in for loop (g[f]!=-1)
                if len(g) > 1 and g[f - 1] != g[f] and last_id != -1 and g[
                        f] != -1 and not ign_g[f]:
                    tmpFragments += 1
                    self.fragments += 1

                # compute MT/PT/ML
                tracking_ratio = tracked / float(len(g) - sum(ign_g))
                if tracking_ratio > 0.8:
                    tmpMT += 1
                    self.MT += 1
                elif tracking_ratio < 0.2:
                    tmpML += 1
                    self.ML += 1
                else:  # 0.2 <= tracking_ratio <= 0.8
                    tmpPT += 1
                    self.PT += 1

        if (self.n_gt_trajectories - n_ignored_tr_total) == 0:
            self.MT = 0.
            self.PT = 0.
            self.ML = 0.
        else:
            self.MT /= float(self.n_gt_trajectories - n_ignored_tr_total)
            self.PT /= float(self.n_gt_trajectories - n_ignored_tr_total)
            self.ML /= float(self.n_gt_trajectories - n_ignored_tr_total)

        # precision/recall etc.
        if (self.fp + self.tp) == 0 or (self.tp + self.fn) == 0:
            self.recall = 0.
            self.precision = 0.
        else:
            self.recall = self.tp / float(self.tp + self.fn)
            self.precision = self.tp / float(self.fp + self.tp)
        if (self.recall + self.precision) == 0:
            self.F1 = 0.
        else:
            self.F1 = 2. * (self.precision * self.recall) / (
                self.precision + self.recall)
        if sum(self.n_frames) == 0:
            self.FAR = "n/a"
        else:
            self.FAR = self.fp / float(sum(self.n_frames))

        # compute CLEARMOT
        if self.n_gt == 0:
            self.MOTA = -float("inf")
            self.MODA = -float("inf")
        else:
            self.MOTA = 1 - (self.fn + self.fp + self.id_switches
                             ) / float(self.n_gt)
            self.MODA = 1 - (self.fn + self.fp) / float(self.n_gt)
        if self.tp == 0:
            self.MOTP = float("inf")
        else:
            self.MOTP = self.total_cost / float(self.tp)
        if self.n_gt != 0:
            if self.id_switches == 0:
                self.MOTAL = 1 - (self.fn + self.fp + self.id_switches
                                  ) / float(self.n_gt)
            else:
                self.MOTAL = 1 - (self.fn + self.fp +
                                  math.log10(self.id_switches)
                                  ) / float(self.n_gt)
        else:
            self.MOTAL = -float("inf")
        if sum(self.n_frames) == 0:
            self.MODP = "n/a"
        else:
            self.MODP = sum(self.MODP_t) / float(sum(self.n_frames))
        return True

    def createSummary(self):
        summary = ""
        summary += "tracking evaluation summary".center(80, "=") + "\n"
        summary += self.printEntry("Multiple Object Tracking Accuracy (MOTA)",
                                   self.MOTA) + "\n"
        summary += self.printEntry("Multiple Object Tracking Precision (MOTP)",
                                   self.MOTP) + "\n"
        summary += self.printEntry("Multiple Object Tracking Accuracy (MOTAL)",
                                   self.MOTAL) + "\n"
        summary += self.printEntry("Multiple Object Detection Accuracy (MODA)",
                                   self.MODA) + "\n"
        summary += self.printEntry("Multiple Object Detection Precision (MODP)",
                                   self.MODP) + "\n"
        summary += "\n"
        summary += self.printEntry("Recall", self.recall) + "\n"
        summary += self.printEntry("Precision", self.precision) + "\n"
        summary += self.printEntry("F1", self.F1) + "\n"
        summary += self.printEntry("False Alarm Rate", self.FAR) + "\n"
        summary += "\n"
        summary += self.printEntry("Mostly Tracked", self.MT) + "\n"
        summary += self.printEntry("Partly Tracked", self.PT) + "\n"
        summary += self.printEntry("Mostly Lost", self.ML) + "\n"
        summary += "\n"
        summary += self.printEntry("True Positives", self.tp) + "\n"
        #summary += self.printEntry("True Positives per Sequence", self.tps) + "\n"
        summary += self.printEntry("Ignored True Positives", self.itp) + "\n"
        #summary += self.printEntry("Ignored True Positives per Sequence", self.itps) + "\n"

        summary += self.printEntry("False Positives", self.fp) + "\n"
        #summary += self.printEntry("False Positives per Sequence", self.fps) + "\n"
        summary += self.printEntry("False Negatives", self.fn) + "\n"
        #summary += self.printEntry("False Negatives per Sequence", self.fns) + "\n"
        summary += self.printEntry("ID-switches", self.id_switches) + "\n"
        self.fp = self.fp / self.n_gt
        self.fn = self.fn / self.n_gt
        self.id_switches = self.id_switches / self.n_gt
        summary += self.printEntry("False Positives Ratio", self.fp) + "\n"
        #summary += self.printEntry("False Positives per Sequence", self.fps) + "\n"
        summary += self.printEntry("False Negatives Ratio", self.fn) + "\n"
        #summary += self.printEntry("False Negatives per Sequence", self.fns) + "\n"
        summary += self.printEntry("Ignored False Negatives Ratio",
                                   self.ifn) + "\n"

        #summary += self.printEntry("Ignored False Negatives per Sequence", self.ifns) + "\n"
        summary += self.printEntry("Missed Targets", self.fn) + "\n"
        summary += self.printEntry("ID-switches", self.id_switches) + "\n"
        summary += self.printEntry("Fragmentations", self.fragments) + "\n"
        summary += "\n"
        summary += self.printEntry("Ground Truth Objects (Total)", self.n_gt +
                                   self.n_igt) + "\n"
        #summary += self.printEntry("Ground Truth Objects (Total) per Sequence", self.n_gts) + "\n"
        summary += self.printEntry("Ignored Ground Truth Objects",
                                   self.n_igt) + "\n"
        #summary += self.printEntry("Ignored Ground Truth Objects per Sequence", self.n_igts) + "\n"
        summary += self.printEntry("Ground Truth Trajectories",
                                   self.n_gt_trajectories) + "\n"
        summary += "\n"
        summary += self.printEntry("Tracker Objects (Total)", self.n_tr) + "\n"
        #summary += self.printEntry("Tracker Objects (Total) per Sequence", self.n_trs) + "\n"
        summary += self.printEntry("Ignored Tracker Objects", self.n_itr) + "\n"
        #summary += self.printEntry("Ignored Tracker Objects per Sequence", self.n_itrs) + "\n"
        summary += self.printEntry("Tracker Trajectories",
                                   self.n_tr_trajectories) + "\n"
        #summary += "\n"
        #summary += self.printEntry("Ignored Tracker Objects with Associated Ignored Ground Truth Objects", self.n_igttr) + "\n"
        summary += "=" * 80
        return summary

    def printEntry(self, key, val, width=(70, 10)):
        """
            Pretty print an entry in a table fashion.
        """
        s_out = key.ljust(width[0])
        if type(val) == int:
            s = "%%%dd" % width[1]
            s_out += s % val
        elif type(val) == float:
            s = "%%%df" % (width[1])
            s_out += s % val
        else:
            s_out += ("%s" % val).rjust(width[1])
        return s_out

    def saveToStats(self, save_summary):
        """
            Save the statistics in a whitespace separate file.
        """
        summary = self.createSummary()
        if save_summary:
            filename = os.path.join(self.result_path,
                                    "summary_%s.txt" % self.cls)
            dump = open(filename, "w+")
            dump.write(summary)
            dump.close()
        return summary


class KITTIMOTMetric(Metric):
    def __init__(self, save_summary=True):
        self.save_summary = save_summary
        self.MOTEvaluator = KITTIEvaluation
        self.result_root = None
        self.reset()

    def reset(self):
        self.seqs = []
        self.n_sequences = 0
        self.n_frames = []
        self.strsummary = ''

    def update(self, data_root, seq, data_type, result_root, result_filename):
        assert data_type == 'kitti', "data_type should 'kitti'"
        self.result_root = result_root
        self.gt_path = data_root
        gt_path = '{}/label_02/{}.txt'.format(data_root, seq)
        gt = open(gt_path, "r")
        max_frame = 0
        for line in gt:
            line = line.strip()
            line_list = line.split(" ")
            if int(line_list[0]) > max_frame:
                max_frame = int(line_list[0])
        rs = open(result_filename, "r")
        for line in rs:
            line = line.strip()
            line_list = line.split(" ")
            if int(line_list[0]) > max_frame:
                max_frame = int(line_list[0])
        gt.close()
        rs.close()
        self.n_frames.append(max_frame + 1)
        self.seqs.append(seq)
        self.n_sequences += 1

    def accumulate(self):
        logger.info("Processing Result for KITTI Tracking Benchmark")
        e = self.MOTEvaluator(result_path=self.result_root, gt_path=self.gt_path,\
            n_frames=self.n_frames, seqs=self.seqs, n_sequences=self.n_sequences)
        try:
            if not e.loadTracker():
                return
            logger.info("Loading Results - Success")
            logger.info("Evaluate Object Class: %s" % c.upper())
        except:
            logger.info("Caught exception while loading result data.")
        if not e.loadGroundtruth():
            raise ValueError("Ground truth not found.")
        logger.info("Loading Groundtruth - Success")
        # sanity checks
        if len(e.groundtruth) is not len(e.tracker):
            logger.info(
                "The uploaded data does not provide results for every sequence.")
            return False
        logger.info("Loaded %d Sequences." % len(e.groundtruth))
        logger.info("Start Evaluation...")

        if e.compute3rdPartyMetrics():
            self.strsummary = e.saveToStats(self.save_summary)
        else:
            logger.info(
                "There seem to be no true positives or false positives at all in the submitted data."
            )

    def log(self):
        print(self.strsummary)

    def get_results(self):
        return self.strsummary