video_action_infer.py 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob

import cv2
import numpy as np
import math
import paddle
import sys
from collections import Sequence
import paddle.nn.functional as F

C
chenxujun 已提交
27
# add deploy path of PaddleDetection to sys.path
28 29 30 31
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from paddle.inference import Config, create_predictor
Z
zhiboniu 已提交
32 33 34
from python.utils import argsparser, Timer, get_current_memory_mb
from python.benchmark_utils import PaddleInferBenchmark
from python.infer import Detector, print_arguments
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
from video_action_preprocess import VideoDecoder, Sampler, Scale, CenterCrop, Normalization, Image2Array


def softmax(x):
    f_x = np.exp(x) / np.sum(np.exp(x))
    return f_x


class VideoActionRecognizer(object):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 num_seg=8,
                 seg_len=1,
                 short_size=256,
                 target_size=224,
                 top_k=1,
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 ir_optim=True):

        self.num_seg = num_seg
        self.seg_len = seg_len
        self.short_size = short_size
        self.target_size = target_size
        self.top_k = top_k

        assert batch_size == 1, "VideoActionRecognizer only support batch_size=1 now."

        self.model_dir = model_dir
        self.device = device
        self.run_mode = run_mode
        self.batch_size = batch_size
        self.trt_min_shape = trt_min_shape
        self.trt_max_shape = trt_max_shape
        self.trt_opt_shape = trt_opt_shape
        self.trt_calib_mode = trt_calib_mode
        self.cpu_threads = cpu_threads
        self.enable_mkldnn = enable_mkldnn
        self.ir_optim = ir_optim

        self.recognize_times = Timer()

99 100
        model_file_path = glob.glob(os.path.join(model_dir, "*.pdmodel"))[0]
        params_file_path = glob.glob(os.path.join(model_dir, "*.pdiparams"))[0]
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        self.config = Config(model_file_path, params_file_path)

        if device == "GPU" or device == "gpu":
            self.config.enable_use_gpu(8000, 0)
        else:
            self.config.disable_gpu()
        if self.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            self.config.set_mkldnn_cache_capacity(10)
            self.config.enable_mkldnn()

        self.config.switch_ir_optim(self.ir_optim)  # default true

        precision_map = {
            'trt_int8': Config.Precision.Int8,
            'trt_fp32': Config.Precision.Float32,
            'trt_fp16': Config.Precision.Half
        }
        if run_mode in precision_map.keys():
            self.config.enable_tensorrt_engine(
121
                max_batch_size=8, precision_mode=precision_map[run_mode])
122 123 124 125 126 127 128

        self.config.enable_memory_optim()
        # use zero copy
        self.config.switch_use_feed_fetch_ops(False)

        self.predictor = create_predictor(self.config)

J
JYChen 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    @classmethod
    def init_with_cfg(cls, args, cfg):
        return cls(model_dir=cfg['model_dir'],
                   short_size=cfg['short_size'],
                   target_size=cfg['target_size'],
                   batch_size=cfg['batch_size'],
                   device=args.device,
                   run_mode=args.run_mode,
                   trt_min_shape=args.trt_min_shape,
                   trt_max_shape=args.trt_max_shape,
                   trt_opt_shape=args.trt_opt_shape,
                   trt_calib_mode=args.trt_calib_mode,
                   cpu_threads=args.cpu_threads,
                   enable_mkldnn=args.enable_mkldnn)

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    def preprocess_batch(self, file_list):
        batched_inputs = []
        for file in file_list:
            inputs = self.preprocess(file)
            batched_inputs.append(inputs)
        batched_inputs = [
            np.concatenate([item[i] for item in batched_inputs])
            for i in range(len(batched_inputs[0]))
        ]
        self.input_file = file_list
        return batched_inputs

    def get_timer(self):
        return self.recognize_times

    def predict(self, input):
        '''
        Args:
            input (str) or (list): video file path or image data list
        Returns:
            results (dict): 
        '''

        input_names = self.predictor.get_input_names()
        input_tensor = self.predictor.get_input_handle(input_names[0])

        output_names = self.predictor.get_output_names()
        output_tensor = self.predictor.get_output_handle(output_names[0])

        # preprocess
        self.recognize_times.preprocess_time_s.start()
        if type(input) == str:
            inputs = self.preprocess_video(input)
        else:
            inputs = self.preprocess_frames(input)
        self.recognize_times.preprocess_time_s.end()

        inputs = np.expand_dims(
            inputs, axis=0).repeat(
                self.batch_size, axis=0).copy()

        input_tensor.copy_from_cpu(inputs)

        # model prediction
        self.recognize_times.inference_time_s.start()
        self.predictor.run()
        self.recognize_times.inference_time_s.end()

        output = output_tensor.copy_to_cpu()

        # postprocess
        self.recognize_times.postprocess_time_s.start()
        classes, scores = self.postprocess(output)
        self.recognize_times.postprocess_time_s.end()

        return classes, scores

    def preprocess_frames(self, frame_list):
        """
        frame_list: list, frame list
        return: list
        """

        results = {}
        results['frames_len'] = len(frame_list)
        results["imgs"] = frame_list

        img_mean = [0.485, 0.456, 0.406]
        img_std = [0.229, 0.224, 0.225]
        ops = [
214
            CenterCrop(self.target_size), Image2Array(),
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
            Normalization(img_mean, img_std)
        ]
        for op in ops:
            results = op(results)

        res = np.expand_dims(results['imgs'], axis=0).copy()
        return [res]

    def preprocess_video(self, input_file):
        """
        input_file: str, file path
        return: list
        """
        assert os.path.isfile(input_file) is not None, "{0} not exists".format(
            input_file)

        results = {'filename': input_file}
        img_mean = [0.485, 0.456, 0.406]
        img_std = [0.229, 0.224, 0.225]
        ops = [
            VideoDecoder(), Sampler(
                self.num_seg, self.seg_len, valid_mode=True),
            Scale(self.short_size), CenterCrop(self.target_size), Image2Array(),
            Normalization(img_mean, img_std)
        ]
        for op in ops:
            results = op(results)

        res = np.expand_dims(results['imgs'], axis=0).copy()
        return [res]

    def postprocess(self, output):
        output = output.flatten()  # numpy.ndarray
        output = softmax(output)
        classes = np.argpartition(output, -self.top_k)[-self.top_k:]
        classes = classes[np.argsort(-output[classes])]
        scores = output[classes]
        return classes, scores


def main():
    if not FLAGS.run_benchmark:
        assert FLAGS.batch_size == 1
        assert FLAGS.use_fp16 is False
    else:
        assert FLAGS.use_gpu is True

    recognizer = VideoActionRecognizer(
        FLAGS.model_dir,
        short_size=FLAGS.short_size,
        target_size=FLAGS.target_size,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn, )

    if not FLAGS.run_benchmark:
        classes, scores = recognizer.predict(FLAGS.video_file)
        print("Current video file: {}".format(FLAGS.video_file))
        print("\ttop-1 class: {0}".format(classes[0]))
        print("\ttop-1 score: {0}".format(scores[0]))
    else:
        cm, gm, gu = get_current_memory_mb()
        mems = {'cpu_rss_mb': cm, 'gpu_rss_mb': gm, 'gpu_util': gu * 100}

        perf_info = recognizer.recognize_times.report()
        model_dir = FLAGS.model_dir
        mode = FLAGS.run_mode
        model_info = {
            'model_name': model_dir.strip('/').split('/')[-1],
            'precision': mode.split('_')[-1]
        }
        data_info = {
            'batch_size': FLAGS.batch_size,
            'shape': "dynamic_shape",
            'data_num': perf_info['img_num']
        }
        recognize_log = PaddleInferBenchmark(recognizer.config, model_info,
                                             data_info, perf_info, mems)
        recognize_log('Fight')


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()