tensor_array_read_write_op.cc 7.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
Y
Yang Yu 已提交
14
#include "paddle/operators/array_operator.h"
Y
Yang Yang(Tony) 已提交
15
#include "paddle/operators/detail/safe_ref.h"
Y
Yu Yang 已提交
16 17 18
namespace paddle {
namespace operators {

Y
Yang Yu 已提交
19
class WriteToArrayOp : public ArrayOp {
Y
Yu Yang 已提交
20 21 22 23 24
 public:
  WriteToArrayOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
Y
Yang Yu 已提交
25
      : ArrayOp(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
26 27 28 29 30 31 32 33 34 35

  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    auto *x = scope.FindVar(Input("X"));
    PADDLE_ENFORCE(x != nullptr, "X must be set");
    auto &x_tensor = x->Get<framework::LoDTensor>();
    size_t offset = GetOffset(scope, dev_ctx);
    auto *out =
        scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensorArray>();
    if (offset >= out->size()) {
Y
Yang Yang(Tony) 已提交
36 37
      VLOG(10) << "Resize " << Output("Out") << " from " << out->size()
               << " to " << offset + 1;
Y
Yu Yang 已提交
38 39 40
      out->resize(offset + 1);
    }
    auto *out_tensor = &out->at(offset);
D
dzhwinter 已提交
41
    CopyFrom(x_tensor, dev_ctx.GetPlace(), dev_ctx, out_tensor);
Y
Yu Yang 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    out_tensor->set_lod(x_tensor.lod());
  }
};

class WriteToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  WriteToArrayOpProtoMaker(framework::OpProto *proto,
                           framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "(LoDTensor) the tensor will be written to tensor array");
    AddInput(
        "I",
        "(Tensor) the subscript index in tensor array. The number of element "
        "should be 1");
    AddOutput("Out", "(TensorArray) the tensor array will be written");
    AddComment(R"DOC(Write a LoDTensor to a LoDTensor array.

Assume T is LoDTensor, i is the subscript of the array, and A is the array. The
equation is

A[i] = T
)DOC");
  }
};

class WriteToArrayInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("I"), "Must set the subscript index");
    PADDLE_ENFORCE_EQ(framework::product(context->GetInputDim("I")), 1,
                      "The number of element of subscript index must be 1");
    PADDLE_ENFORCE(context->HasInput("X"), NotHasXError());
    PADDLE_ENFORCE(context->HasOutput("Out"), NotHasOutError());
    context->SetOutputDim("Out", context->GetInputDim("X"));
  }

 protected:
  virtual const char *NotHasXError() const { return "Must set the lod tensor"; }

  virtual const char *NotHasOutError() const {
    return "Must set the lod tensor array";
  }
};

class WriteToArrayInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDescBind &op_desc,
                  framework::BlockDescBind *block) const override {
Y
Yang Yang(Tony) 已提交
90 91 92 93 94 95 96 97 98
    auto x_name = op_desc.Input("X")[0];
    auto out_name = op_desc.Output("Out")[0];
    VLOG(10) << "Set Variable " << out_name << " as LOD_TENSOR_ARRAY";
    auto &out = detail::Ref(block->FindRecursiveOrCreateVar(out_name),
                            "Cannot found %s", out_name);
    out.SetType(framework::VarDesc::LOD_TENSOR_ARRAY);
    auto &x =
        detail::Ref(block->FindVarRecursive(x_name), "Cannot found %s", x_name);
    out.SetDataType(x.GetDataType());
Y
Yu Yang 已提交
99 100 101
  }
};

Y
Yang Yu 已提交
102
class ReadFromArrayOp : public ArrayOp {
Y
Yu Yang 已提交
103 104 105 106 107
 public:
  ReadFromArrayOp(const std::string &type,
                  const framework::VariableNameMap &inputs,
                  const framework::VariableNameMap &outputs,
                  const framework::AttributeMap &attrs)
Y
Yang Yu 已提交
108
      : ArrayOp(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
109 110 111 112 113 114 115
  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    auto *x = scope.FindVar(Input("X"));
    PADDLE_ENFORCE(x != nullptr, "X must be set");
    auto &x_array = x->Get<framework::LoDTensorArray>();
    auto *out = scope.FindVar(Output("Out"));
    PADDLE_ENFORCE(out != nullptr, "Out must be set");
Y
Yang Yang(Tony) 已提交
116
    auto *out_tensor = out->GetMutable<framework::LoDTensor>();
Y
Yu Yang 已提交
117 118
    size_t offset = GetOffset(scope, dev_ctx);
    PADDLE_ENFORCE_LT(offset, x_array.size());
D
dzhwinter 已提交
119 120
    framework::CopyFrom(x_array[offset], dev_ctx.GetPlace(), dev_ctx,
                        out_tensor);
Y
Yang Yang(Tony) 已提交
121
    out_tensor->set_lod(x_array[offset].lod());
Y
Yu Yang 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  }
};

class ReadFromArrayProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ReadFromArrayProtoMaker(framework::OpProto *proto,
                          framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "(TensorArray) the array will be read from.");
    AddInput("I",
             "(Tensor) the subscript index in tensor array. The number of "
             "element should be 1");
    AddOutput("Out", "(LoDTensor) the tensor will be read from.");
    AddComment(R"DOC(Read a LoDTensor from a LoDTensor Array

Assume T is LoDTensor, i is th e subscript of the array, and A is the array. The
equation is

T = A[i]
)DOC");
  }
};

class ReadFromArrayInferShape : public WriteToArrayInferShape {
 protected:
  const char *NotHasXError() const override {
    return "The input array X must be set";
  }
  const char *NotHasOutError() const override {
    return "The output tensor out must be set";
  }
};

class WriteToArrayGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDescBind> Apply() const override {
    auto *grad_op = new framework::OpDescBind();
    grad_op->SetType("read_from_array");
    grad_op->SetInput("I", Input("I"));
    grad_op->SetInput("X", OutputGrad("Out"));
    grad_op->SetOutput("Out", InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDescBind>(grad_op);
  }
};

class ReadFromArrayGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDescBind> Apply() const override {
    auto *grad_op = new framework::OpDescBind();
    grad_op->SetType("write_to_array");
    grad_op->SetInput("I", Input("I"));
    grad_op->SetInput("X", OutputGrad("Out"));
    grad_op->SetOutput("Out", InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDescBind>(grad_op);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(write_to_array, ops::WriteToArrayOp,
                  ops::WriteToArrayInferShape, ops::WriteToArrayOpProtoMaker,
                  ops::WriteToArrayGradMaker, ops::WriteToArrayInferVarType);
REGISTER_OPERATOR(read_from_array, ops::ReadFromArrayOp,
                  ops::ReadFromArrayInferShape, ops::ReadFromArrayProtoMaker,
                  ops::ReadFromArrayGradMaker);