MKLDNNLRNLayer.cpp 5.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNLRNLayer.h"
#include "paddle/utils/Logging.h"

using namespace mkldnn;  // NOLINT
typedef memory::format format;

namespace paddle {

REGISTER_LAYER(mkldnn_lrn, MKLDNNLRNLayer);

bool MKLDNNLRNLayer::init(const LayerMap& layerMap,
                          const ParameterMap& parameterMap) {
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
    return false;
  }

  /* the size of inputs for norm-layer is 1 */
  CHECK_EQ(config_.inputs_size(), 1UL);
  const NormConfig& conf = config_.inputs(0).norm_conf();
  localSize_ = conf.size();
  alpha_ = conf.scale();
  beta_ = conf.pow();

  ic_ = conf.channels();
  oc_ = ic_;
  iw_ = conf.img_size();
  ow_ = conf.output_x();
  ih_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
  oh_ = conf.has_output_y() ? conf.output_y() : conf.output_x();
  CHECK_EQ(iw_, ow_);
  CHECK_EQ(ih_, oh_);
  return true;
}

void MKLDNNLRNLayer::reshape(
    int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) {
  CHECK_EQ(inputLayers_.size(), 1UL);
  reshapeInput(bs, ih, iw);
  // ic_ and oc can not be changed
  CHECK_EQ((size_t)ic,
           inputLayers_[0]->getOutputValue()->getElementCnt() / bs / ih / iw)
      << "Input channel can not be changed";
  oh = ih;
  ow = iw;
  reshapeOutput(oh, ow);
  resizeOutput(bs, oc * oh * ow);
}

void MKLDNNLRNLayer::resetFwd(std::vector<primitive>& pipeline,
                              std::vector<MKLDNNMatrixPtr>& inputs,
                              MKLDNNMatrixPtr& out) {
  resetFwdBuffers(inputs[0], out);

  resetFwdPD(fwdPD_, inputs[0], out);

  resetFwdPipeline(pipeline, fwdPD_, inputs[0], out);
}

void MKLDNNLRNLayer::resetBwd(std::vector<primitive>& pipeline,
                              std::vector<MKLDNNMatrixPtr>& inputs,
                              MKLDNNMatrixPtr& out) {
  std::shared_ptr<lrn_bwd::primitive_desc> pd;

  resetBwdBuffers(inputs[0], out);

  resetBwdPD(pd, inputs[0], out);

  resetBwdPipeline(pipeline, pd, inputs[0], out);
}

void MKLDNNLRNLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
                                     MKLDNNMatrixPtr& out) {
  resetInValue(in);
  CHECK(in);
  resetOutValue(out, in->getPrimitiveDesc());
}

void MKLDNNLRNLayer::resetFwdPD(std::shared_ptr<lrn_fwd::primitive_desc>& pd,
                                MKLDNNMatrixPtr in,
                                MKLDNNMatrixPtr out) {
  prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
                                        : prop_kind::forward_training;
  auto fwdDesc = lrn_fwd::desc(pk,
                               algorithm::lrn_across_channels,
                               in->getMemoryDesc(),
                               localSize_,
                               alpha_,
                               beta_,
                               1.0f);
  pd.reset(new lrn_fwd::primitive_desc(fwdDesc, engine_));
  // prepare workspace if necessary
  workspace_ =
      passType_ != PASS_TEST
          ? std::make_shared<memory>(memory(pd->workspace_primitive_desc()))
          : nullptr;
}

void MKLDNNLRNLayer::resetFwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<lrn_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& out) {
  fwd_ = workspace_
             ? std::make_shared<lrn_fwd>(lrn_fwd(*pd, *in, *workspace_, *out))
             : std::make_shared<lrn_fwd>(lrn_fwd(*pd, *in, *out));
  pipeline.push_back(*fwd_);
}

void MKLDNNLRNLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
                                     MKLDNNMatrixPtr& out) {
  CHECK(inVals_[0] && outVal_);
  resetOutGrad(out, outVal_->getPrimitiveDesc());
  resetInGrad(in, inVals_[0]->getPrimitiveDesc());
}

void MKLDNNLRNLayer::resetBwdPD(std::shared_ptr<lrn_bwd::primitive_desc>& pd,
                                MKLDNNMatrixPtr& in,
                                MKLDNNMatrixPtr& out) {
  pd = nullptr;
  if (in == nullptr) {
    return;
  }
  CHECK(out);
  auto bwdDesc = lrn_bwd::desc(algorithm::lrn_across_channels,
                               in->getMemoryDesc(),
                               out->getMemoryDesc(),
                               localSize_,
                               alpha_,
                               beta_,
                               1.0f);
  pd.reset(new lrn_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_));
}

void MKLDNNLRNLayer::resetBwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<lrn_bwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& out) {
  if (pd == nullptr) {
    return;
  }
  CHECK(inVals_[0]);
  CHECK(workspace_);
  bwdData_ = std::make_shared<lrn_bwd>(
      lrn_bwd(*pd, *inVals_[0], *out, *workspace_, *in));
  pipeline.push_back(*bwdData_);
}

}  // namespace paddle