beam_search_op.cc 8.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/beam_search_op.h"
Y
Yan Chunwei 已提交
16

17
#include <algorithm>
Y
Yan Chunwei 已提交
18
#include <map>
19 20
#include <string>
#include <vector>
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29

namespace paddle {
namespace operators {

void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
                            framework::LoDTensor *selected_ids,
                            framework::LoDTensor *selected_scores) {
Q
Qiao Longfei 已提交
30 31 32
  auto abs_lod = framework::ToAbsOffset(ids_->lod());
  auto &high_level = abs_lod[lod_level_];

Y
Yan Chunwei 已提交
33
  auto items = SelectTopBeamSizeItems();
Q
Qiao Longfei 已提交
34 35 36 37 38 39 40 41
  auto selected_items = ToMap(items, high_level.back());
  VLOG(3) << "selected_items:";
  for (size_t i = 0; i < selected_items.size(); ++i) {
    VLOG(3) << "offset:" << i;
    for (auto &item : selected_items[i]) {
      VLOG(3) << ItemToString(item);
    }
  }
Y
Yan Chunwei 已提交
42 43 44
  PruneEndidCandidates(pre_ids, &selected_items);
  // calculate the output tensor's height
  size_t num_instances = std::accumulate(
Y
Yan Chunwei 已提交
45
      std::begin(selected_items), std::end(selected_items), 0,
Y
Yan Chunwei 已提交
46 47 48 49 50 51 52 53 54
      [](size_t a, std::vector<Item> &b) { return a + b.size(); });
  // the output tensor shape should be [num_instances, 1]
  auto dims = framework::make_ddim(
      std::vector<int64_t>({static_cast<int>(num_instances), 1}));
  selected_ids->Resize(dims);
  selected_scores->Resize(dims);

  std::map<size_t /*offset*/, std::vector<Item>> hash;
  framework::LoD new_lod;
55
  auto *ids_data = selected_ids->mutable_data<int64_t>(platform::CPUPlace());
Y
Yan Chunwei 已提交
56 57 58 59 60 61 62 63
  auto *scores_data =
      selected_scores->mutable_data<float>(platform::CPUPlace());

  // fill in data
  std::vector<size_t> low_level;
  size_t low_offset = 0;
  for (auto &items : selected_items) {
    low_level.push_back(low_offset);
Y
Yan Chunwei 已提交
64 65 66 67 68 69
    sort(items.begin(), items.end(), [](const Item &a, const Item &b) {
      if (a.offset < b.offset) {
        return true;
      }
      return a.id < b.id;
    });
Y
Yan Chunwei 已提交
70 71 72 73 74 75
    for (auto &item : items) {
      ids_data[low_offset] = item.id;
      scores_data[low_offset] = item.score;
      low_offset++;
    }
  }
Y
Yan Chunwei 已提交
76 77
  low_level.push_back(low_offset);

Y
Yan Chunwei 已提交
78 79 80 81
  // fill lod
  framework::LoD lod(2);
  lod[0].assign(high_level.begin(), high_level.end());
  lod[1].assign(low_level.begin(), low_level.end());
Q
Qiao Longfei 已提交
82 83 84
  if (!framework::CheckLoD(lod)) {
    PADDLE_THROW("lod %s is not right", framework::LoDToString(lod));
  }
Y
Yan Chunwei 已提交
85 86 87 88
  selected_ids->set_lod(lod);
  selected_scores->set_lod(lod);
}

Y
Yan Chunwei 已提交
89 90
int BeamSearch::PruneEndidCandidates(const framework::LoDTensor &pre_ids,
                                     std::vector<std::vector<Item>> *items) {
91
  auto *pre_ids_data = pre_ids.data<int64_t>();
Y
Yan Chunwei 已提交
92

Y
Yan Chunwei 已提交
93
  int res = 0;
Y
Yan Chunwei 已提交
94 95 96 97
  for (size_t offset = 0; offset < items->size(); offset++) {
    auto prefix_id = pre_ids_data[offset];
    if (prefix_id == end_id_) {
      items->at(offset).clear();
Y
Yan Chunwei 已提交
98 99
    } else {
      res++;
Y
Yan Chunwei 已提交
100 101
    }
  }
Y
Yan Chunwei 已提交
102 103

  return res;
Y
Yan Chunwei 已提交
104 105 106
}

std::vector<std::vector<BeamSearch::Item>> BeamSearch::ToMap(
Q
Qiao Longfei 已提交
107
    const std::vector<std::vector<Item>> &items, size_t element_num) {
Y
Yan Chunwei 已提交
108
  std::vector<std::vector<Item>> result;
Q
Qiao Longfei 已提交
109
  result.resize(element_num);
Y
Yan Chunwei 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  for (auto &entries : items) {
    for (const auto &item : entries) {
      result[item.offset].push_back(item);
    }
  }
  return result;
}

std::vector<std::vector<BeamSearch::Item>>
BeamSearch::SelectTopBeamSizeItems() {
  std::vector<std::vector<Item>> result;
  std::vector<Item> items;
  // for each source sentence, select the top beam_size items across all
  // candidate sets.
  while (NextItemSet(&items)) {
    std::nth_element(std::begin(items), std::begin(items) + beam_size_,
                     std::end(items), [](const Item &a, const Item &b) {
                       // TODO(superjom) make score's comparation customizable.
                       // partial sort in descending order
                       return a.score > b.score;
                     });
    // prune the top beam_size items.
    if (items.size() > beam_size_) {
      items.resize(beam_size_);
    }
    result.emplace_back(items);
  }
Q
Qiao Longfei 已提交
137 138 139 140 141 142 143 144
  VLOG(3) << "SelectTopBeamSizeItems result size " << result.size();
  for (auto &items : result) {
    VLOG(3) << "item set:";
    for (auto &item : items) {
      VLOG(3) << ItemToString(item);
    }
  }

Y
Yan Chunwei 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158
  return result;
}

// the candidates of a source
bool BeamSearch::NextItemSet(std::vector<BeamSearch::Item> *items) {
  if (sent_offset_ >= ids_->NumElements(lod_level_)) {
    return false;
  }
  // find the current candidates
  auto ids = *ids_;
  auto scores = *scores_;

  auto abs_lod = framework::ToAbsOffset(ids.lod());

159
  auto *ids_data = ids.data<int64_t>();
Y
Yan Chunwei 已提交
160 161 162 163 164 165 166 167 168 169 170
  auto *scores_data = scores.data<float>();

  size_t instance_dim = 1;
  for (int i = 1; i < ids.dims().size(); i++) {
    instance_dim *= ids.dims()[i];
  }

  items->clear();
  items->reserve(framework::product(ids.dims()));
  for (size_t offset = abs_lod[lod_level_][sent_offset_];
       offset < abs_lod[lod_level_][sent_offset_ + 1]; offset++) {
171
    for (size_t d = 0; d < instance_dim; d++) {
Y
Yan Chunwei 已提交
172 173 174 175 176 177 178 179 180 181
      const size_t dim_offset = offset * instance_dim + d;
      items->emplace_back(offset, ids_data[dim_offset],
                          scores_data[dim_offset]);
    }
  }

  sent_offset_++;
  return true;
}

Q
Qiao Longfei 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
std::ostream &operator<<(std::ostream &os, const BeamSearch::Item &item) {
  os << "{";
  os << "offset: " << item.offset << ", ";
  os << "id: " << item.id << ", ";
  os << "score: " << item.score << "";
  os << "}";

  return os;
}

std::string ItemToString(const BeamSearch::Item &item) {
  std::ostringstream stream;
  stream << item;
  return stream.str();
}

K
ktlichkid 已提交
198
class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yan Chunwei 已提交
199
 public:
K
ktlichkid 已提交
200
  BeamSearchOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yan Chunwei 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
      : OpProtoAndCheckerMaker(proto, op_checker) {
    // inputs and outputs stored in proto
    AddInput("pre_ids", "ids in previous step");
    AddInput("ids", "a LoDTensor of shape of [None,k]");
    AddInput("scores",
             "a LoDTensor that has the same shape and LoD with `ids`");
    AddOutput("selected_ids",
              "a LoDTensor that stores the IDs selected by beam search");
    AddOutput(
        "selected_scores",
        "a LoDTensor that has the same shape and LoD with `selected_ids`");

    // Attributes stored in AttributeMap
    AddAttr<int>("level", "the level of LoDTensor");
    AddAttr<int>("beam_size", "beam size for beam search");
    AddAttr<int>("end_id",
                 "the token id which indicates the end of a sequence");

    AddComment(
        "This is a beam search operator that help to generate sequences.");
  }
};

K
ktlichkid 已提交
224
class BeamSearchOp : public framework::OperatorWithKernel {
K
ktlichkid 已提交
225 226
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
K
ktlichkid 已提交
227

K
ktlichkid 已提交
228
 protected:
K
ktlichkid 已提交
229
  void InferShape(framework::InferShapeContext *ctx) const override {
K
ktlichkid 已提交
230 231
    for (const std::string &arg :
         std::vector<std::string>({"pre_ids", "ids", "scores"})) {
K
ktlichkid 已提交
232 233
      PADDLE_ENFORCE(ctx->HasInput(arg), "BeamSearch need input argument '%s'",
                     arg);
K
ktlichkid 已提交
234 235 236
    }
    for (const std::string &arg :
         std::vector<std::string>({"selected_ids", "selected_scores"})) {
K
ktlichkid 已提交
237
      PADDLE_ENFORCE(ctx->HasOutput(arg),
K
ktlichkid 已提交
238 239
                     "BeamSearch need output argument '%s'", arg);
    }
240 241 242 243
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
244 245 246
    framework::OpKernelType kt = framework::OpKernelType(
        framework::ToDataType(
            ctx.Input<framework::LoDTensor>("pre_ids")->type()),
K
ktlichkid 已提交
247
        platform::CPUPlace());
248
    return kt;
K
ktlichkid 已提交
249 250 251
  }
};

Q
Qiao Longfei 已提交
252 253 254 255 256
class BeamSearchInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
    for (auto &o : op_desc.Output("selected_ids")) {
257
      block->Var(o)->SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
258 259
    }
    for (auto &o : op_desc.Output("selected_scores")) {
260
      block->Var(o)->SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
261 262 263
    }
  }
};
K
ktlichkid 已提交
264

Y
Yan Chunwei 已提交
265 266
}  // namespace operators
}  // namespace paddle
K
ktlichkid 已提交
267

K
ktlichkid 已提交
268
namespace ops = paddle::operators;
K
ktlichkid 已提交
269 270 271

REGISTER_OPERATOR(beam_search, ops::BeamSearchOp, ops::BeamSearchOpMaker,
                  ops::BeamSearchInferVarType);
K
ktlichkid 已提交
272 273 274
REGISTER_OP_CPU_KERNEL(
    beam_search,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, float>,
K
ktlichkid 已提交
275 276 277
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::BeamSearchOpKernel<paddle::platform::CPUDeviceContext, int64_t>);