activation_op.cc 11.0 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/activation_op.h"

namespace paddle {
namespace operators {

Q
qijun 已提交
20 21 22 23 24
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Q
Qiao Longfei 已提交
25 26 27
  void InferShape(framework::InferShapeContextBase *ctx) const override {
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ "Y");
Q
qijun 已提交
28
  }
Q
qijun 已提交
29 30
};

Q
qijun 已提交
31 32 33 34 35
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Q
Qiao Longfei 已提交
36 37
  void InferShape(framework::InferShapeContextBase *ctx) const override {
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Y"));
Q
qijun 已提交
38 39 40
  }
};

Q
qijun 已提交
41 42 43 44 45 46 47
class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SigmoidOpMaker(framework::OpProto *proto,
                 framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Sigmoid operator");
    AddOutput("Y", "Output of Sigmoid operator");
48
    AddComment("Sigmoid activation operator, sigmoid = 1 / (1 + exp(-x))");
Q
qijun 已提交
49 50 51 52 53 54 55 56 57
  }
};

class ExpOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ExpOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Exp operator");
    AddOutput("Y", "Output of Exp operator");
58
    AddComment("Exp activation operator, exp(x) = e^x");
Q
qijun 已提交
59 60 61 62 63 64 65 66 67
  }
};

class ReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Relu operator");
    AddOutput("Y", "Output of Relu operator");
68 69 70 71
    AddComment("Relu activation operator, relu(x) = max(x, 0)");
  }
};

K
Kavya Srinet 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
template <typename AttrType>
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LeakyReluOpMaker(framework::OpProto *proto,
                   framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of LeakyRelu operator");
    AddOutput("Y", "Output of LeakyRelu operator");
    AddComment(
        "LeakyRelu activation operator, "
        "leaky_relu = max(x, alpha * x)");
    AddAttr<AttrType>("alpha", "The small negative slope")
        .SetDefault(static_cast<AttrType>(0.02f));
  }
};

88 89 90 91 92 93 94 95 96 97 98 99
class TanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  TanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Tanh operator");
    AddOutput("Y", "Output of Tanh operator");
    AddComment(
        "Tanh activation operator, tanh = (exp(x) - exp(-x)) / (exp(x) + "
        "exp(-x))");
  }
};

K
Kavya Srinet 已提交
100 101 102 103 104 105 106 107 108 109 110
class TanhShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  TanhShrinkOpMaker(framework::OpProto *proto,
                    framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of TanhShrink operator");
    AddOutput("Y", "Output of TanhShrink operator");
    AddComment("TanhShrink activation operator, tanhshrink(x) = x - tanh(x)");
  }
};

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
class SqrtOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SqrtOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Sqrt operator");
    AddOutput("Y", "Output of Sqrt operator");
    AddComment("Sqrt activation operator, sqrt(x) = x^(1/2)");
  }
};

class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  AbsOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Abs operator");
    AddOutput("Y", "Output of Abs operator");
    AddComment("Abs activation operator, abs(x) = |x|");
  }
};

class ReciprocalOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ReciprocalOpMaker(framework::OpProto *proto,
                    framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Reciprocal operator");
    AddOutput("Y", "Output of Reciprocal operator");
    AddComment("Reciprocal activation operator, reciprocal(x) = 1 / x");
  }
};

class LogOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LogOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Log operator");
    AddOutput("Y", "Output of Log operator");
    AddComment("Log activation operator, log(x) = natural logarithm of x");
  }
};

class SquareOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SquareOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Square operator");
    AddOutput("Y", "Output of Square operator");
    AddComment("Square activation operator, square(x) = x^2");
  }
};

162 163 164 165 166 167 168 169 170 171 172
class SoftsignOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SoftsignOpMaker(framework::OpProto *proto,
                  framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Softsign operator");
    AddOutput("Y", "Output of Softsign operator");
    AddComment("Softsign activation operator, softsign(x) = x / (1 + |x|)");
  }
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
template <typename AttrType>
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  BReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of BRelu operator");
    AddOutput("Y", "Output of BRelu operator");
    AddComment("BRelu activation operator, brelu = max(min(x, t_min), t_max)");
    AddAttr<AttrType>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<AttrType>(0));
    AddAttr<AttrType>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<AttrType>(24));
  }
};

template <typename AttrType>
class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SoftReluOpMaker(framework::OpProto *proto,
                  framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of SoftRelu operator");
    AddOutput("Y", "Output of SoftRelu operator");
    AddComment(
        "SoftRelu activation operator, soft_relu = log(1 + exp(max(min(x, "
        "threshold), threshold)))");
    AddAttr<AttrType>("threshold", "The threshold value of SoftRelu")
        .SetDefault(static_cast<AttrType>(40));
  }
};

template <typename AttrType>
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  PowOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of Pow operator");
    AddOutput("Y", "Output of Pow operator");
    AddComment("Pow activation operator, pow(x, factor) = x^factor");
    AddAttr<AttrType>("factor", "The exponential factor of Pow")
        .SetDefault(static_cast<AttrType>(1));
  }
};

template <typename AttrType>
class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  STanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "Input of STanh operator");
    AddOutput("Y", "Output of STanh operator");
    AddComment("STanh activation operator, stanh = b * tanh(a * x)");
    AddAttr<AttrType>("scale_a", "The scale parameter of a for the input")
        .SetDefault(static_cast<AttrType>(2 / 3));
    AddAttr<AttrType>("scale_b", "The scale parameter of b for the input")
        .SetDefault(static_cast<AttrType>(1.7159));
Q
qijun 已提交
229 230 231 232 233 234 235
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
236

Q
qijun 已提交
237 238 239 240 241
REGISTER_OP(sigmoid, ops::ActivationOp, ops::SigmoidOpMaker, sigmoid_grad,
            ops::ActivationOpGrad);

REGISTER_OP(exp, ops::ActivationOp, ops::ExpOpMaker, exp_grad,
            ops::ActivationOpGrad);
Q
qijun 已提交
242 243 244

REGISTER_OP(relu, ops::ActivationOp, ops::ReluOpMaker, relu_grad,
            ops::ActivationOpGrad);
245 246 247 248

REGISTER_OP(tanh, ops::ActivationOp, ops::TanhOpMaker, tanh_grad,
            ops::ActivationOpGrad);

K
Kavya Srinet 已提交
249 250 251
REGISTER_OP(tanh_shrink, ops::ActivationOp, ops::TanhShrinkOpMaker,
            tanh_shrink_grad, ops::ActivationOpGrad);

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
REGISTER_OP(sqrt, ops::ActivationOp, ops::SqrtOpMaker, sqrt_grad,
            ops::ActivationOpGrad);

REGISTER_OP(abs, ops::ActivationOp, ops::AbsOpMaker, abs_grad,
            ops::ActivationOpGrad);

REGISTER_OP(reciprocal, ops::ActivationOp, ops::ReciprocalOpMaker,
            reciprocal_grad, ops::ActivationOpGrad);

REGISTER_OP(log, ops::ActivationOp, ops::LogOpMaker, log_grad,
            ops::ActivationOpGrad);

REGISTER_OP(square, ops::ActivationOp, ops::SquareOpMaker, square_grad,
            ops::ActivationOpGrad);

267 268 269
REGISTER_OP(softsign, ops::ActivationOp, ops::SoftsignOpMaker, softsign_grad,
            ops::ActivationOpGrad);

270 271 272
REGISTER_OP(brelu, ops::ActivationOp, ops::BReluOpMaker<float>, brelu_grad,
            ops::ActivationOpGrad);

K
Kavya Srinet 已提交
273 274 275
REGISTER_OP(leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker<float>,
            leaky_relu_grad, ops::ActivationOpGrad);

276 277 278 279 280 281 282 283
REGISTER_OP(soft_relu, ops::ActivationOp, ops::SoftReluOpMaker<float>,
            soft_relu_grad, ops::ActivationOpGrad);

REGISTER_OP(pow, ops::ActivationOp, ops::PowOpMaker<float>, pow_grad,
            ops::ActivationOpGrad);

REGISTER_OP(stanh, ops::ActivationOp, ops::STanhOpMaker<float>, stanh_grad,
            ops::ActivationOpGrad);
284 285 286 287 288 289 290 291 292 293 294 295

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor)        \
  REGISTER_OP_CPU_KERNEL(                                                      \
      act_type,                                                                \
      paddle::operators::ActivationKernel<paddle::platform::CPUPlace,          \
                                          paddle::operators::functor<float>>); \
  REGISTER_OP_CPU_KERNEL(act_type##_grad,                                      \
                         paddle::operators::ActivationGradKernel<              \
                             paddle::platform::CPUPlace,                       \
                             paddle::operators::grad_functor<float>>);

FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL);