keypoint_metrics.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import copy
import os
import json
from collections import OrderedDict
from collections import defaultdict
import numpy as np
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from ..modeling.keypoint_utils import oks_nms

__all__ = ['KeyPointTopDownCOCOEval']


class KeyPointTopDownCOCOEval(object):
    def __init__(self,
                 anno_file,
                 num_samples,
                 num_joints,
                 output_eval,
                 iou_type='keypoints',
                 in_vis_thre=0.2,
                 oks_thre=0.9):
        super(KeyPointTopDownCOCOEval, self).__init__()
        self.coco = COCO(anno_file)
        self.num_samples = num_samples
        self.num_joints = num_joints
        self.iou_type = iou_type
        self.in_vis_thre = in_vis_thre
        self.oks_thre = oks_thre
        self.output_eval = output_eval
        self.res_file = os.path.join(output_eval, "keypoints_results.json")
        self.reset()

    def reset(self):
        self.results = {
            'all_preds': np.zeros(
                (self.num_samples, self.num_joints, 3), dtype=np.float32),
            'all_boxes': np.zeros((self.num_samples, 6)),
            'image_path': []
        }
        self.eval_results = {}
        self.idx = 0

    def update(self, inputs, outputs):
        kpt_coord = outputs['kpt_coord']
        kpt_score = outputs['kpt_score']
        num_images = inputs['image'].shape[0]
        self.results['all_preds'][self.idx:self.idx + num_images, :, 0:
                                  2] = kpt_coord[:, :, 0:2]
        self.results['all_preds'][self.idx:self.idx + num_images, :, 2:
                                  3] = kpt_score
        self.results['all_boxes'][self.idx:self.idx + num_images, 0:2] = inputs[
            'center'].numpy()[:, 0:2]
        self.results['all_boxes'][self.idx:self.idx + num_images, 2:4] = inputs[
            'scale'].numpy()[:, 0:2]
        self.results['all_boxes'][self.idx:self.idx + num_images, 4] = np.prod(
            inputs['scale'].numpy() * 200, 1)
        self.results['all_boxes'][self.idx:self.idx + num_images,
                                  5] = np.squeeze(inputs['score'].numpy())
        self.results['image_path'].extend(inputs['im_id'].numpy())

        self.idx += num_images

    def _write_coco_keypoint_results(self, keypoints):
        data_pack = [{
            'cat_id': 1,
            'cls': 'person',
            'ann_type': 'keypoints',
            'keypoints': keypoints
        }]
        results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
        if not os.path.exists(self.output_eval):
            os.makedirs(self.output_eval)
        with open(self.res_file, 'w') as f:
            json.dump(results, f, sort_keys=True, indent=4)
        try:
            json.load(open(self.res_file))
        except Exception:
            content = []
            with open(self.res_file, 'r') as f:
                for line in f:
                    content.append(line)
            content[-1] = ']'
            with open(self.res_file, 'w') as f:
                for c in content:
                    f.write(c)

    def _coco_keypoint_results_one_category_kernel(self, data_pack):
        cat_id = data_pack['cat_id']
        keypoints = data_pack['keypoints']
        cat_results = []

        for img_kpts in keypoints:
            if len(img_kpts) == 0:
                continue

            _key_points = np.array(
                [img_kpts[k]['keypoints'] for k in range(len(img_kpts))])
            _key_points = _key_points.reshape(_key_points.shape[0], -1)

            result = [{
                'image_id': img_kpts[k]['image'],
                'category_id': cat_id,
                'keypoints': list(_key_points[k]),
                'score': img_kpts[k]['score'],
                'center': list(img_kpts[k]['center']),
                'scale': list(img_kpts[k]['scale'])
            } for k in range(len(img_kpts))]
            cat_results.extend(result)

        return cat_results

    def get_final_results(self, preds, all_boxes, img_path):
        _kpts = []
        for idx, kpt in enumerate(preds):
            _kpts.append({
                'keypoints': kpt,
                'center': all_boxes[idx][0:2],
                'scale': all_boxes[idx][2:4],
                'area': all_boxes[idx][4],
                'score': all_boxes[idx][5],
                'image': int(img_path[idx])
            })
        # image x person x (keypoints)
        kpts = defaultdict(list)
        for kpt in _kpts:
            kpts[kpt['image']].append(kpt)

        # rescoring and oks nms
        num_joints = preds.shape[1]
        in_vis_thre = self.in_vis_thre
        oks_thre = self.oks_thre
        oks_nmsed_kpts = []
        for img in kpts.keys():
            img_kpts = kpts[img]
            for n_p in img_kpts:
                box_score = n_p['score']
                kpt_score = 0
                valid_num = 0
                for n_jt in range(0, num_joints):
                    t_s = n_p['keypoints'][n_jt][2]
                    if t_s > in_vis_thre:
                        kpt_score = kpt_score + t_s
                        valid_num = valid_num + 1
                if valid_num != 0:
                    kpt_score = kpt_score / valid_num
                # rescoring
                n_p['score'] = kpt_score * box_score

            keep = oks_nms([img_kpts[i] for i in range(len(img_kpts))],
                           oks_thre)

            if len(keep) == 0:
                oks_nmsed_kpts.append(img_kpts)
            else:
                oks_nmsed_kpts.append([img_kpts[_keep] for _keep in keep])

        self._write_coco_keypoint_results(oks_nmsed_kpts)

    def accumulate(self):
        self.get_final_results(self.results['all_preds'],
                               self.results['all_boxes'],
                               self.results['image_path'])
        coco_dt = self.coco.loadRes(self.res_file)
        coco_eval = COCOeval(self.coco, coco_dt, 'keypoints')
        coco_eval.params.useSegm = None
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()

        keypoint_stats = []
        for ind in range(len(coco_eval.stats)):
            keypoint_stats.append((coco_eval.stats[ind]))
        self.eval_results['keypoint'] = keypoint_stats

    def log(self):
        stats_names = [
            'AP', 'Ap .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5',
            'AR .75', 'AR (M)', 'AR (L)'
        ]
        num_values = len(stats_names)
        print(' '.join(['| {}'.format(name) for name in stats_names]) + ' |')
        print('|---' * (num_values + 1) + '|')

        print(' '.join([
            '| {:.3f}'.format(value) for value in self.eval_results['keypoint']
        ]) + ' |')

    def get_results(self):
        return self.eval_results