Im2ColOp.cpp 9.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Im2Col.h"

namespace paddle {

/*
 * imShape = [inputChannels, inputHeight, inputWidth]
 * colShape =
 *   [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
 */
template <class T>
class Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, T> {
W
Wu Yi 已提交
26
 public:
27 28 29 30 31 32 33
  void operator()(const T* imData,
                  const TensorShape& imShape,
                  T* colData,
                  const TensorShape& colShape,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
X
xzl 已提交
34 35 36
                  int paddingWidth,
                  int dilationHeight,
                  int dilationWidth) {
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    int inputChannels = imShape[0];
    int inputHeight = imShape[1];
    int inputWidth = imShape[2];
    int filterHeight = colShape[1];
    int filterWidth = colShape[2];
    int outputHeight = colShape[3];
    int outputWidth = colShape[4];
    int channelsCol = inputChannels * filterHeight * filterWidth;

    for (int c = 0; c < channelsCol; ++c) {
      int wOffset = c % filterWidth;
      int hOffset = (c / filterWidth) % filterHeight;
      int c_im = c / filterWidth / filterHeight;
      for (int h = 0; h < outputHeight; ++h) {
        for (int w = 0; w < outputWidth; ++w) {
X
xzl 已提交
52 53
          int imRowIdx = h * strideHeight + hOffset * dilationHeight;
          int imColIdx = w * strideWidth + wOffset * dilationWidth;
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
          if ((imRowIdx - paddingHeight) < 0 ||
              (imRowIdx - paddingHeight) >= inputHeight ||
              (imColIdx - paddingWidth) < 0 ||
              (imColIdx - paddingWidth) >= inputWidth) {
            colData[(c * outputHeight + h) * outputWidth + w] = T(0);
          } else {
            imRowIdx += c_im * inputHeight - paddingHeight;
            imColIdx -= paddingWidth;
            colData[(c * outputHeight + h) * outputWidth + w] =
                imData[imRowIdx * inputWidth + imColIdx];
          }
        }
      }
    }
  }
};

/*
 * imShape = [inputChannels, inputHeight, inputWidth]
 * colShape =
 *   [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
 */
template <class T>
class Col2ImFunctor<kCFO, DEVICE_TYPE_CPU, T> {
W
Wu Yi 已提交
78
 public:
79 80 81 82 83 84 85
  void operator()(T* imData,
                  const TensorShape& imShape,
                  const T* colData,
                  const TensorShape& colShape,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
X
xzl 已提交
86 87 88
                  int paddingWidth,
                  int dilationHeight,
                  int dilationWidth) {
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    int inputChannels = imShape[0];
    int inputHeight = imShape[1];
    int inputWidth = imShape[2];
    int filterHeight = colShape[1];
    int filterWidth = colShape[2];
    int outputHeight = colShape[3];
    int outputWidth = colShape[4];
    int channelsCol = inputChannels * filterHeight * filterWidth;

    for (int c = 0; c < channelsCol; ++c) {
      int wOffset = c % filterWidth;
      int hOffset = (c / filterWidth) % filterHeight;
      int c_im = c / filterWidth / filterHeight;
      for (int h = 0; h < outputHeight; ++h) {
        for (int w = 0; w < outputWidth; ++w) {
X
xzl 已提交
104 105
          int imRowIdx = h * strideHeight + hOffset * dilationHeight;
          int imColIdx = w * strideWidth + wOffset * dilationWidth;
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
          if ((imRowIdx - paddingHeight) >= 0 &&
              (imRowIdx - paddingHeight) < inputHeight &&
              (imColIdx - paddingWidth) >= 0 &&
              (imColIdx - paddingWidth) < inputWidth) {
            imRowIdx += c_im * inputHeight - paddingHeight;
            imColIdx -= paddingWidth;
            imData[imRowIdx * inputWidth + imColIdx] +=
                colData[(c * outputHeight + h) * outputWidth + w];
          }
        }
      }
    }
  }
};

template class Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, float>;
template class Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, double>;
template class Col2ImFunctor<kCFO, DEVICE_TYPE_CPU, float>;
template class Col2ImFunctor<kCFO, DEVICE_TYPE_CPU, double>;

/*
 * imShape = [inputChannels, inputHeight, inputWidth]
 * colShape =
 *   [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
 */
template <class T>
class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, T> {
W
Wu Yi 已提交
133
 public:
134 135 136 137 138 139 140
  void operator()(const T* imData,
                  const TensorShape& imShape,
                  T* colData,
                  const TensorShape& colShape,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
X
xzl 已提交
141 142 143
                  int paddingWidth,
                  int dilationHeight = 1,
                  int dilationWidth = 1) {
144 145 146 147 148 149 150 151 152 153 154 155
    int inputChannels = imShape[0];
    int inputHeight = imShape[1];
    int inputWidth = imShape[2];
    int filterHeight = colShape[3];
    int filterWidth = colShape[4];
    int outputHeight = colShape[0];
    int outputWidth = colShape[1];
    for (int outputH = 0; outputH < outputHeight; ++outputH) {
      for (int outputW = 0; outputW < outputWidth; ++outputW) {
        for (int channel = 0; channel < inputChannels; ++channel) {
          for (int filterH = 0; filterH < filterHeight; ++filterH) {
            for (int filterW = 0; filterW < filterWidth; ++filterW) {
X
xzl 已提交
156 157 158 159
              int imRowOffset = outputH * strideHeight +
                                filterH * dilationHeight - paddingHeight;
              int imColOffset = outputW * strideWidth +
                                filterW * dilationWidth - paddingWidth;
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
              int colDataOffset =
                  (((outputH * outputWidth + outputW) * inputChannels +
                    channel) *
                       filterHeight +
                   filterH) *
                      filterWidth +
                  filterW;
              if (imRowOffset < 0 || imRowOffset >= inputHeight ||
                  imColOffset < 0 || imColOffset >= inputWidth) {
                colData[colDataOffset] = float(0);
              } else {
                int imDataOffset =
                    (channel * inputHeight + imRowOffset) * inputWidth +
                    imColOffset;
                colData[colDataOffset] = imData[imDataOffset];
              }
            }
          }
        }
      }
    }
  }
};

/*
 * imShape = [inputChannels, inputHeight, inputWidth]
 * colShape =
 *   [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
 */
template <class T>
class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, T> {
W
Wu Yi 已提交
191
 public:
192 193 194 195 196 197 198
  void operator()(T* imData,
                  const TensorShape& imShape,
                  const T* colData,
                  const TensorShape& colShape,
                  int strideHeight,
                  int strideWidth,
                  int paddingHeight,
X
xzl 已提交
199 200 201
                  int paddingWidth,
                  int dilationHeight = 1,
                  int dilationWidth = 1) {
202 203 204 205 206 207 208 209 210 211 212 213
    int inputChannels = imShape[0];
    int inputHeight = imShape[1];
    int inputWidth = imShape[2];
    int filterHeight = colShape[3];
    int filterWidth = colShape[4];
    int outputHeight = colShape[0];
    int outputWidth = colShape[1];
    for (int outputH = 0; outputH < outputHeight; ++outputH) {
      for (int outputW = 0; outputW < outputWidth; ++outputW) {
        for (int channel = 0; channel < inputChannels; ++channel) {
          for (int filterH = 0; filterH < filterHeight; ++filterH) {
            for (int filterW = 0; filterW < filterWidth; ++filterW) {
X
xzl 已提交
214 215 216 217
              int imRowOffset = outputH * strideHeight +
                                filterH * dilationHeight - paddingHeight;
              int imColOffset = outputW * strideWidth +
                                filterW * dilationWidth - paddingWidth;
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
              int colDataOffset =
                  (((outputH * outputWidth + outputW) * inputChannels +
                    channel) *
                       filterHeight +
                   filterH) *
                      filterWidth +
                  filterW;
              if (imRowOffset >= 0 && imRowOffset < inputHeight &&
                  imColOffset >= 0 && imColOffset < inputWidth) {
                int imDataOffset =
                    (channel * inputHeight + imRowOffset) * inputWidth +
                    imColOffset;
                imData[imDataOffset] += colData[colDataOffset];
              }
            }
          }
        }
      }
    }
  }
};

template class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, float>;
template class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, double>;
template class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, float>;
template class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, double>;

}  // namespace paddle