depthwise_conv.cu 13.5 KB
Newer Older
1
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserved.
Z
zlx 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

A
Abhinav Arora 已提交
15
#include <vector>
Y
Yi Wang 已提交
16
#include "paddle/fluid/operators/math/depthwise_conv.h"
D
dzhwinter 已提交
17
#include "paddle/fluid/platform/cuda_primitives.h"
Z
zlx 已提交
18 19 20 21 22

namespace paddle {
namespace operators {
namespace math {

23 24
// A Cuda kernel to compute the depthwise convolution forward pass
// in NCHW format.
Z
zlx 已提交
25
template <typename T>
26 27 28 29 30
__global__ void KernelDepthwiseConv(
    const int nthreads, const T* const input_data, const T* const filter_data,
    const int batch_size, const int output_channels, const int output_height,
    const int output_width, const int input_channels, const int input_height,
    const int input_width, const int filter_multiplier, const int filter_height,
Z
zlx 已提交
31
    const int filter_width, const int stride_height, const int stride_width,
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    const int padding_height, const int padding_width, T* const output_data) {
  int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;

  if (index < nthreads) {
    const int batch = index / output_channels / output_height / output_width;
    const int c_out = (index / output_height / output_width) % output_channels;
    const int h_out = (index / output_width) % output_height;
    const int w_out = index % output_width;

    const int c_in = c_out / filter_multiplier;
    const T* weight = filter_data + c_out * filter_height * filter_width;
    T value = 0;
    const int h_in_start = -padding_height + h_out * stride_height;
    const int w_in_start = -padding_width + w_out * stride_width;
    const int h_in_end = h_in_start + filter_height;
    const int w_in_end = w_in_start + filter_width;

    const int in_offset =
        ((batch * input_channels + c_in) * input_height) * input_width;

    const int h_end = h_in_end < input_height ? h_in_end : input_height;
    const int w_end = w_in_end < input_width ? w_in_end : input_width;
    const int h_start = h_in_start > 0 ? h_in_start : 0;
    const int w_start = w_in_start > 0 ? w_in_start : 0;

    for (int h_in = h_start; h_in < h_end; h_in++) {
      for (int w_in = w_start; w_in < w_end; w_in++) {
        const int offset = in_offset + h_in * input_width + w_in;
        value +=
            weight[(h_in - h_in_start) * filter_width + (w_in - w_in_start)] *
            input_data[offset];
Z
zlx 已提交
63 64
      }
    }
65
    output_data[index] = value;
Z
zlx 已提交
66 67
  }
}
68

Z
zlx 已提交
69 70
// CUDA kernel to compute the depthwise convolution backprop w.r.t input.
template <typename T>
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
__global__ void KernelDepthwiseConvInputGrad(
    const int nthreads, const T* const output_grad_data,
    const T* const filter_data, const int batch_size, const int output_channels,
    const int output_height, const int output_width, const int input_channels,
    const int input_height, const int input_width, const int filter_multiplier,
    const int filter_height, const int filter_width, const int stride_height,
    const int stride_width, const int padding_height, const int padding_width,
    T* const input_grad_data) {
  int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
  if (index < nthreads) {
    const int batch = index / input_channels / input_height / input_width;
    const int c_in = (index / input_height / input_width) % input_channels;
    const int h_in = (index / input_width) % input_height;
    const int w_in = index % input_width;

    const int c_out_start = c_in * filter_multiplier;

    int h_out_start =
        (h_in - filter_height + padding_height + stride_height) / stride_height;
    h_out_start = 0 > h_out_start ? 0 : h_out_start;

    int h_out_end = (h_in + padding_height) / stride_height;
    h_out_end = output_height - 1 < h_out_end ? output_height - 1 : h_out_end;

    int w_out_start =
        (w_in - filter_width + padding_width + stride_width) / stride_width;
    w_out_start = 0 > w_out_start ? 0 : w_out_start;

    int w_out_end = (w_in + padding_width) / stride_width;
    w_out_end = output_width - 1 < w_out_end ? output_width - 1 : w_out_end;

    T value = 0;

    for (int c_out = c_out_start; c_out < c_out_start + filter_multiplier;
         c_out++) {
      for (int h_out = h_out_start; h_out <= h_out_end; ++h_out) {
        const int filter_h = h_in + padding_height - h_out * stride_height;
        for (int w_out = w_out_start; w_out <= w_out_end; ++w_out) {
          const int filter_w = w_in + padding_width - w_out * stride_width;
          const int filter_offset = c_out * filter_height * filter_width +
                                    filter_h * filter_width + filter_w;
          const int output_grad_offset =
              ((batch * output_channels + c_out) * output_height + h_out) *
                  output_width +
              w_out;
          value +=
              output_grad_data[output_grad_offset] * filter_data[filter_offset];
Z
zlx 已提交
118 119 120
        }
      }
    }
121
    input_grad_data[index] += value;
Z
zlx 已提交
122 123 124
  }
}

125
// Cuda kernel to compute the depthwise convolution backprop w.r.t. filter.
Z
zlx 已提交
126
template <typename T>
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
__global__ void KernelDepthwiseConvFilterGrad(
    const int nthreads, const T* const output_grad_data,
    const T* const input_data, const int num, const int output_channels,
    const int output_height, const int output_width, const int input_channels,
    const int input_height, const int input_width, const int filter_multiplier,
    const int filter_height, const int filter_width, const int stride_height,
    const int stride_width, const int padding_height, const int padding_width,
    T* const filter_grad_data) {
  int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
  if (index < nthreads) {
    const int w_out = index % output_width;
    const int h_out = (index / output_width) % output_height;
    const int c_out = (index / output_width / output_height) % output_channels;
    const int batch = (index / output_width / output_height / output_channels);
    const int c_in = c_out / filter_multiplier;
    const int h_in_start = -padding_height + h_out * stride_height;
    const int w_in_start = -padding_width + w_out * stride_width;
    const int h_in_end =
        -padding_height + h_out * stride_height + filter_height;
    const int w_in_end = -padding_width + w_out * stride_width + filter_width;
    const int in_offset =
        (batch * input_channels + c_in) * input_height * input_width;

    T* addr_offset = filter_grad_data + c_out * filter_height * filter_width;
    const int h_end = h_in_end < input_height ? h_in_end : input_height;
    const int w_end = w_in_end < input_width ? w_in_end : input_width;
    const int h_start = h_in_start > 0 ? h_in_start : 0;
    const int w_start = w_in_start > 0 ? w_in_start : 0;

    for (int h_in = h_start; h_in < h_end; h_in++) {
      for (int w_in = w_start; w_in < w_end; w_in++) {
        const int offset = in_offset + h_in * input_width + w_in;
        const T diff_temp = output_grad_data[index] * input_data[offset];
        T* addr = addr_offset + (h_in - h_in_start) * filter_width +
                  (w_in - w_in_start);
        paddle::platform::CudaAtomicAdd(addr, diff_temp);
163
      }
Z
zlx 已提交
164 165 166 167 168 169 170 171 172
    }
  }
}

/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
X
xzl 已提交
173
template <class T>
Z
zlx 已提交
174 175 176 177
class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
 public:
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input,
X
xzl 已提交
178 179
                  const framework::Tensor& filter,
                  const std::vector<int>& strides,
180
                  const std::vector<int>& paddings, framework::Tensor* output) {
Z
zlx 已提交
181 182 183 184 185 186 187
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
188 189
    const int ksize_height = filter.dims()[2];
    const int ksize_width = filter.dims()[3];
Z
zlx 已提交
190 191 192 193 194 195 196 197 198
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* filter_data = filter.data<T>();
    T* output_data = output->mutable_data<T>(context.GetPlace());

199 200 201 202 203 204 205 206 207 208 209
    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelDepthwiseConv<T><<<grid, threads, 0, context.stream()>>>(
        nthreads, input_data, filter_data, batch_size, output_channels,
        output_height, output_width, input_channels, input_height, input_width,
        output_channels / input_channels, ksize_height, ksize_width,
        stride_height, stride_width, padding_height, padding_width,
        output_data);
Z
zlx 已提交
210 211 212 213
  }
};

template <typename T>
214
class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
Z
zlx 已提交
215 216 217
 public:
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input,
218 219
                  const framework::Tensor& filter,
                  const framework::Tensor& output_grad,
X
xzl 已提交
220 221
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
222
                  framework::Tensor* input_grad) {
Z
zlx 已提交
223 224 225 226
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
227 228 229 230 231 232
    const int output_channels = output_grad.dims()[1];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int ksize_height = filter.dims()[2];
    const int ksize_width = filter.dims()[3];
    const int stride_height = strides[0];
Z
zlx 已提交
233 234 235 236
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

237
    const T* filter_data = filter.data<T>();
Z
zlx 已提交
238 239 240
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

241 242 243 244 245 246 247 248 249 250 251
    int nthreads = batch_size * input_channels * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelDepthwiseConvInputGrad<T><<<grid, threads, 0, context.stream()>>>(
        nthreads, output_grad_data, filter_data, batch_size, output_channels,
        output_height, output_width, input_channels, input_height, input_width,
        output_channels / input_channels, ksize_height, ksize_width,
        stride_height, stride_width, padding_height, padding_width,
        input_grad_data);
Z
zlx 已提交
252 253 254 255
  }
};

template <typename T>
256
class DepthwiseConvFilterGradFunctor<platform::CUDADeviceContext, T> {
Z
zlx 已提交
257 258 259
 public:
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input,
260
                  const framework::Tensor& output_grad,
X
xzl 已提交
261 262
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
263
                  framework::Tensor* filter_grad) {
Z
zlx 已提交
264 265 266 267
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
268 269 270 271 272
    const int output_channels = output_grad.dims()[1];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int ksize_height = filter_grad->dims()[2];
    const int ksize_width = filter_grad->dims()[3];
Z
zlx 已提交
273 274 275 276 277 278 279
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_grad_data = output_grad.data<T>();
280
    T* filter_grad_data = filter_grad->mutable_data<T>(context.GetPlace());
Z
zlx 已提交
281

282 283 284 285 286 287 288 289 290 291 292 293
    int nthreads = batch_size * output_channels * output_height * output_width;

    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelDepthwiseConvFilterGrad<T><<<grid, threads, 0, context.stream()>>>(
        nthreads, output_grad_data, input_data, batch_size, output_channels,
        output_height, output_width, input_channels, input_height, input_width,
        output_channels / input_channels, ksize_height, ksize_width,
        stride_height, stride_width, padding_height, padding_width,
        filter_grad_data);
Z
zlx 已提交
294 295 296
  }
};

297 298
template class DepthwiseConvFunctor<platform::CUDADeviceContext, float>;
template class DepthwiseConvFunctor<platform::CUDADeviceContext, double>;
Z
zlx 已提交
299 300

template class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext,
301
                                             float>;
Z
zlx 已提交
302
template class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext,
303 304 305 306
                                             double>;

template class DepthwiseConvFilterGradFunctor<platform::CUDADeviceContext,
                                              float>;
Z
zlx 已提交
307
template class DepthwiseConvFilterGradFunctor<platform::CUDADeviceContext,
308
                                              double>;
Z
zlx 已提交
309 310 311 312

}  // namespace math
}  // namespace operators
}  // namespace paddle