test_yolov3_loss.py 15.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import unittest
import numpy as np
from scipy.special import logit
from scipy.special import expit

import paddle
from paddle import fluid
from paddle.fluid import core
# add python path of PadleDetection to sys.path
import os
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

32
from ppdet.modeling.losses import YOLOv3Loss
Q
qingqing01 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
from ppdet.data.transform.op_helper import jaccard_overlap
import random
import numpy as np


def _split_ioup(output, an_num, num_classes):
    """
    Split output feature map to output, predicted iou
    along channel dimension
    """
    ioup = fluid.layers.slice(output, axes=[1], starts=[0], ends=[an_num])
    ioup = fluid.layers.sigmoid(ioup)
    oriout = fluid.layers.slice(
        output, axes=[1], starts=[an_num], ends=[an_num * (num_classes + 6)])
    return (ioup, oriout)


def _split_output(output, an_num, num_classes):
    """
    Split output feature map to x, y, w, h, objectness, classification
    along channel dimension
    """
    x = fluid.layers.strided_slice(
        output,
        axes=[1],
        starts=[0],
        ends=[output.shape[1]],
        strides=[5 + num_classes])
    y = fluid.layers.strided_slice(
        output,
        axes=[1],
        starts=[1],
        ends=[output.shape[1]],
        strides=[5 + num_classes])
    w = fluid.layers.strided_slice(
        output,
        axes=[1],
        starts=[2],
        ends=[output.shape[1]],
        strides=[5 + num_classes])
    h = fluid.layers.strided_slice(
        output,
        axes=[1],
        starts=[3],
        ends=[output.shape[1]],
        strides=[5 + num_classes])
    obj = fluid.layers.strided_slice(
        output,
        axes=[1],
        starts=[4],
        ends=[output.shape[1]],
        strides=[5 + num_classes])
    clss = []
    stride = output.shape[1] // an_num
    for m in range(an_num):
        clss.append(
            fluid.layers.slice(
                output,
                axes=[1],
                starts=[stride * m + 5],
                ends=[stride * m + 5 + num_classes]))
    cls = fluid.layers.transpose(
        fluid.layers.stack(
            clss, axis=1), perm=[0, 1, 3, 4, 2])
    return (x, y, w, h, obj, cls)


def _split_target(target):
    """
    split target to x, y, w, h, objectness, classification
    along dimension 2
    target is in shape [N, an_num, 6 + class_num, H, W]
    """
    tx = target[:, :, 0, :, :]
    ty = target[:, :, 1, :, :]
    tw = target[:, :, 2, :, :]
    th = target[:, :, 3, :, :]
    tscale = target[:, :, 4, :, :]
    tobj = target[:, :, 5, :, :]
    tcls = fluid.layers.transpose(target[:, :, 6:, :, :], perm=[0, 1, 3, 4, 2])
    tcls.stop_gradient = True
    return (tx, ty, tw, th, tscale, tobj, tcls)


def _calc_obj_loss(output, obj, tobj, gt_box, batch_size, anchors, num_classes,
                   downsample, ignore_thresh, scale_x_y):
    # A prediction bbox overlap any gt_bbox over ignore_thresh, 
    # objectness loss will be ignored, process as follows:
    # 1. get pred bbox, which is same with YOLOv3 infer mode, use yolo_box here
    # NOTE: img_size is set as 1.0 to get noramlized pred bbox
    bbox, prob = fluid.layers.yolo_box(
        x=output,
        img_size=fluid.layers.ones(
            shape=[batch_size, 2], dtype="int32"),
        anchors=anchors,
        class_num=num_classes,
        conf_thresh=0.,
        downsample_ratio=downsample,
        clip_bbox=False,
        scale_x_y=scale_x_y)
    # 2. split pred bbox and gt bbox by sample, calculate IoU between pred bbox
    #    and gt bbox in each sample
    if batch_size > 1:
        preds = fluid.layers.split(bbox, batch_size, dim=0)
        gts = fluid.layers.split(gt_box, batch_size, dim=0)
    else:
        preds = [bbox]
        gts = [gt_box]
        probs = [prob]
    ious = []
    for pred, gt in zip(preds, gts):

        def box_xywh2xyxy(box):
            x = box[:, 0]
            y = box[:, 1]
            w = box[:, 2]
            h = box[:, 3]
            return fluid.layers.stack(
                [
                    x - w / 2.,
                    y - h / 2.,
                    x + w / 2.,
                    y + h / 2.,
                ], axis=1)

        pred = fluid.layers.squeeze(pred, axes=[0])
        gt = box_xywh2xyxy(fluid.layers.squeeze(gt, axes=[0]))
        ious.append(fluid.layers.iou_similarity(pred, gt))
    iou = fluid.layers.stack(ious, axis=0)
    # 3. Get iou_mask by IoU between gt bbox and prediction bbox,
    #    Get obj_mask by tobj(holds gt_score), calculate objectness loss
    max_iou = fluid.layers.reduce_max(iou, dim=-1)
    iou_mask = fluid.layers.cast(max_iou <= ignore_thresh, dtype="float32")
    output_shape = fluid.layers.shape(output)
    an_num = len(anchors) // 2
    iou_mask = fluid.layers.reshape(iou_mask, (-1, an_num, output_shape[2],
                                               output_shape[3]))
    iou_mask.stop_gradient = True
    # NOTE: tobj holds gt_score, obj_mask holds object existence mask
    obj_mask = fluid.layers.cast(tobj > 0., dtype="float32")
    obj_mask.stop_gradient = True
    # For positive objectness grids, objectness loss should be calculated
    # For negative objectness grids, objectness loss is calculated only iou_mask == 1.0
    loss_obj = fluid.layers.sigmoid_cross_entropy_with_logits(obj, obj_mask)
    loss_obj_pos = fluid.layers.reduce_sum(loss_obj * tobj, dim=[1, 2, 3])
    loss_obj_neg = fluid.layers.reduce_sum(
        loss_obj * (1.0 - obj_mask) * iou_mask, dim=[1, 2, 3])
    return loss_obj_pos, loss_obj_neg


def fine_grained_loss(output,
                      target,
                      gt_box,
                      batch_size,
                      num_classes,
                      anchors,
                      ignore_thresh,
                      downsample,
                      scale_x_y=1.,
                      eps=1e-10):
    an_num = len(anchors) // 2
    x, y, w, h, obj, cls = _split_output(output, an_num, num_classes)
    tx, ty, tw, th, tscale, tobj, tcls = _split_target(target)

    tscale_tobj = tscale * tobj

    scale_x_y = scale_x_y

    if (abs(scale_x_y - 1.0) < eps):
        loss_x = fluid.layers.sigmoid_cross_entropy_with_logits(
            x, tx) * tscale_tobj
        loss_x = fluid.layers.reduce_sum(loss_x, dim=[1, 2, 3])
        loss_y = fluid.layers.sigmoid_cross_entropy_with_logits(
            y, ty) * tscale_tobj
        loss_y = fluid.layers.reduce_sum(loss_y, dim=[1, 2, 3])
    else:
        dx = scale_x_y * fluid.layers.sigmoid(x) - 0.5 * (scale_x_y - 1.0)
        dy = scale_x_y * fluid.layers.sigmoid(y) - 0.5 * (scale_x_y - 1.0)
        loss_x = fluid.layers.abs(dx - tx) * tscale_tobj
        loss_x = fluid.layers.reduce_sum(loss_x, dim=[1, 2, 3])
        loss_y = fluid.layers.abs(dy - ty) * tscale_tobj
        loss_y = fluid.layers.reduce_sum(loss_y, dim=[1, 2, 3])

    # NOTE: we refined loss function of (w, h) as L1Loss
    loss_w = fluid.layers.abs(w - tw) * tscale_tobj
    loss_w = fluid.layers.reduce_sum(loss_w, dim=[1, 2, 3])
    loss_h = fluid.layers.abs(h - th) * tscale_tobj
    loss_h = fluid.layers.reduce_sum(loss_h, dim=[1, 2, 3])

    loss_obj_pos, loss_obj_neg = _calc_obj_loss(
        output, obj, tobj, gt_box, batch_size, anchors, num_classes, downsample,
        ignore_thresh, scale_x_y)

    loss_cls = fluid.layers.sigmoid_cross_entropy_with_logits(cls, tcls)
    loss_cls = fluid.layers.elementwise_mul(loss_cls, tobj, axis=0)
    loss_cls = fluid.layers.reduce_sum(loss_cls, dim=[1, 2, 3, 4])

    loss_xys = fluid.layers.reduce_mean(loss_x + loss_y)
    loss_whs = fluid.layers.reduce_mean(loss_w + loss_h)
    loss_objs = fluid.layers.reduce_mean(loss_obj_pos + loss_obj_neg)
    loss_clss = fluid.layers.reduce_mean(loss_cls)

    losses_all = {
        "loss_xy": fluid.layers.sum(loss_xys),
        "loss_wh": fluid.layers.sum(loss_whs),
        "loss_loc": fluid.layers.sum(loss_xys) + fluid.layers.sum(loss_whs),
        "loss_obj": fluid.layers.sum(loss_objs),
        "loss_cls": fluid.layers.sum(loss_clss),
    }
    return losses_all, x, y, tx, ty


def gt2yolotarget(gt_bbox, gt_class, gt_score, anchors, mask, num_classes, size,
                  stride):
    grid_h, grid_w = size
    h, w = grid_h * stride, grid_w * stride
    an_hw = np.array(anchors) / np.array([[w, h]])
    target = np.zeros(
        (len(mask), 6 + num_classes, grid_h, grid_w), dtype=np.float32)
    for b in range(gt_bbox.shape[0]):
        gx, gy, gw, gh = gt_bbox[b, :]
        cls = gt_class[b]
        score = gt_score[b]
        if gw <= 0. or gh <= 0. or score <= 0.:
            continue

        # find best match anchor index
        best_iou = 0.
        best_idx = -1
        for an_idx in range(an_hw.shape[0]):
            iou = jaccard_overlap([0., 0., gw, gh],
                                  [0., 0., an_hw[an_idx, 0], an_hw[an_idx, 1]])
            if iou > best_iou:
                best_iou = iou
                best_idx = an_idx

        gi = int(gx * grid_w)
        gj = int(gy * grid_h)

        # gtbox should be regresed in this layes if best match 
        # anchor index in anchor mask of this layer
        if best_idx in mask:
            best_n = mask.index(best_idx)

            # x, y, w, h, scale
            target[best_n, 0, gj, gi] = gx * grid_w - gi
            target[best_n, 1, gj, gi] = gy * grid_h - gj
            target[best_n, 2, gj, gi] = np.log(gw * w / anchors[best_idx][0])
            target[best_n, 3, gj, gi] = np.log(gh * h / anchors[best_idx][1])
            target[best_n, 4, gj, gi] = 2.0 - gw * gh

            # objectness record gt_score
            # if target[best_n, 5, gj, gi] > 0:
            #     print('find 1 duplicate')
            target[best_n, 5, gj, gi] = score

            # classification
            target[best_n, 6 + cls, gj, gi] = 1.

    return target


class TestYolov3LossOp(unittest.TestCase):
    def setUp(self):
        self.initTestCase()
        x = np.random.uniform(0, 1, self.x_shape).astype('float64')
        gtbox = np.random.random(size=self.gtbox_shape).astype('float64')
        gtlabel = np.random.randint(0, self.class_num, self.gtbox_shape[:2])
        gtmask = np.random.randint(0, 2, self.gtbox_shape[:2])
        gtbox = gtbox * gtmask[:, :, np.newaxis]
        gtlabel = gtlabel * gtmask

        gtscore = np.ones(self.gtbox_shape[:2]).astype('float64')
        if self.gtscore:
            gtscore = np.random.random(self.gtbox_shape[:2]).astype('float64')

        target = []
        for box, label, score in zip(gtbox, gtlabel, gtscore):
            target.append(
                gt2yolotarget(box, label, score, self.anchors, self.anchor_mask,
                              self.class_num, (self.h, self.w
                                               ), self.downsample_ratio))

        self.target = np.array(target).astype('float64')

        self.mask_anchors = []
        for i in self.anchor_mask:
            self.mask_anchors.extend(self.anchors[i])
        self.x = x
        self.gtbox = gtbox
        self.gtlabel = gtlabel
        self.gtscore = gtscore

    def initTestCase(self):
        self.b = 8
        self.h = 19
        self.w = 19
        self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
                        [59, 119], [116, 90], [156, 198], [373, 326]]
        self.anchor_mask = [6, 7, 8]
        self.na = len(self.anchor_mask)
        self.class_num = 80
        self.ignore_thresh = 0.7
        self.downsample_ratio = 32
        self.x_shape = (self.b, len(self.anchor_mask) * (5 + self.class_num),
                        self.h, self.w)
        self.gtbox_shape = (self.b, 40, 4)
        self.gtscore = True
        self.use_label_smooth = False
        self.scale_x_y = 1.

    def test_loss(self):
        x, gtbox, gtlabel, gtscore, target = self.x, self.gtbox, self.gtlabel, self.gtscore, self.target
        yolo_loss = YOLOv3Loss(
            ignore_thresh=self.ignore_thresh,
            label_smooth=self.use_label_smooth,
            num_classes=self.class_num,
            downsample=self.downsample_ratio,
            scale_x_y=self.scale_x_y)
        x = paddle.to_tensor(x.astype(np.float32))
        gtbox = paddle.to_tensor(gtbox.astype(np.float32))
        gtlabel = paddle.to_tensor(gtlabel.astype(np.float32))
        gtscore = paddle.to_tensor(gtscore.astype(np.float32))
        t = paddle.to_tensor(target.astype(np.float32))
        anchor = [self.anchors[i] for i in self.anchor_mask]
        (yolo_loss1, px, py, tx, ty) = fine_grained_loss(
            output=x,
            target=t,
            gt_box=gtbox,
            batch_size=self.b,
            num_classes=self.class_num,
            anchors=self.mask_anchors,
            ignore_thresh=self.ignore_thresh,
            downsample=self.downsample_ratio,
            scale_x_y=self.scale_x_y)
        yolo_loss2 = yolo_loss.yolov3_loss(
            x, t, gtbox, anchor, self.downsample_ratio, self.scale_x_y)
        for k in yolo_loss2:
            self.assertAlmostEqual(
                yolo_loss1[k].numpy()[0],
                yolo_loss2[k].numpy()[0],
                delta=1e-2,
                msg=k)


class TestYolov3LossNoGTScore(TestYolov3LossOp):
    def initTestCase(self):
        self.b = 1
        self.h = 76
        self.w = 76
        self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
                        [59, 119], [116, 90], [156, 198], [373, 326]]
        self.anchor_mask = [0, 1, 2]
        self.na = len(self.anchor_mask)
        self.class_num = 80
        self.ignore_thresh = 0.7
        self.downsample_ratio = 8
        self.x_shape = (self.b, len(self.anchor_mask) * (5 + self.class_num),
                        self.h, self.w)
        self.gtbox_shape = (self.b, 40, 4)
        self.gtscore = False
        self.use_label_smooth = False
        self.scale_x_y = 1.


class TestYolov3LossWithScaleXY(TestYolov3LossOp):
    def initTestCase(self):
        self.b = 5
        self.h = 38
        self.w = 38
        self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
                        [59, 119], [116, 90], [156, 198], [373, 326]]
        self.anchor_mask = [3, 4, 5]
        self.na = len(self.anchor_mask)
        self.class_num = 80
        self.ignore_thresh = 0.7
        self.downsample_ratio = 16
        self.x_shape = (self.b, len(self.anchor_mask) * (5 + self.class_num),
                        self.h, self.w)
        self.gtbox_shape = (self.b, 40, 4)
        self.gtscore = True
        self.use_label_smooth = False
        self.scale_x_y = 1.2


if __name__ == "__main__":
    unittest.main()