yolov3_r50vd_dcn_obj365_pretrained_coco.yml 3.2 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
architecture: YOLOv3
train_feed: YoloTrainFeed
eval_feed: YoloEvalFeed
test_feed: YoloTestFeed
use_gpu: true
max_iters: 55000
log_smooth_window: 20
save_dir: output
snapshot_iter: 10000
metric: COCO
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_obj365_pretrained.tar 
weights: output/yolov3_r50vd_dcn_obj365_pretrained_coco/model_final
num_classes: 80

YOLOv3:
  backbone: ResNet
  yolo_head: YOLOv3Head

ResNet:
  norm_type: sync_bn
  freeze_at: 0
  freeze_norm: false
  norm_decay: 0.
  depth: 50
  feature_maps: [3, 4, 5]
  variant: d
  dcn_v2_stages: [5]

YOLOv3Head:
  anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
  anchors: [[10, 13], [16, 30], [33, 23],
            [30, 61], [62, 45], [59, 119],
            [116, 90], [156, 198], [373, 326]]
  norm_decay: 0.
  ignore_thresh: 0.7
  label_smooth: true
  nms:
    background_label: -1
    keep_top_k: 100
    nms_threshold: 0.45
    nms_top_k: 1000
    normalized: false
    score_threshold: 0.01

LearningRate:
  base_lr: 0.001
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
    - 40000
    - 50000
  - !LinearWarmup
    start_factor: 0.
    steps: 4000

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

YoloTrainFeed:
  batch_size: 8
  dataset:
    dataset_dir: dataset/coco
    annotation: annotations/instances_train2017.json
    image_dir: train2017
  sample_transforms:
    - !DecodeImage
      to_rgb: True
      with_mixup: False
    - !NormalizeBox {}
    - !CropImage
      batch_sampler: [[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
        [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0],
        [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0],
        [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0],
        [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0],
        [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0],
        [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]]
    - !RandomInterpImage
      target_size: 608
    - !RandomFlipImage
      is_normalized: True
    - !NormalizeImage
      mean:
      - 0.485
      - 0.456
      - 0.406
      std:
      - 0.229
      - 0.224
      - 0.225
      is_scale: False
      is_channel_first: False      
    - !Permute
      to_bgr: False
  num_workers: 8
  bufsize: 128
  use_process: true

YoloEvalFeed:
  batch_size: 8
  image_shape: [3, 608, 608]
  dataset:
    dataset_dir: dataset/coco
    annotation: annotations/instances_val2017.json
    image_dir: val2017
  sample_transforms:
    - !DecodeImage
      to_rgb: True
      with_mixup: False
    - !ResizeImage
      interp: 2 
      target_size: 608
    - !NormalizeImage
      mean:
      - 0.485
      - 0.456
      - 0.406
      std:
      - 0.229
      - 0.224
      - 0.225
      is_scale: False
      is_channel_first: False      
    - !Permute
      to_bgr: False


YoloTestFeed:
  batch_size: 1
  image_shape: [3, 608, 608]
  dataset:
    annotation: dataset/coco/annotations/instances_val2017.json
  sample_transforms:
    - !DecodeImage
      to_rgb: True
      with_mixup: False
    - !ResizeImage
      interp: 2 
      target_size: 608
    - !NormalizeImage
      mean:
      - 0.485
      - 0.456
      - 0.406
      std:
      - 0.229
      - 0.224
      - 0.225
      is_scale: False
      is_channel_first: False      
    - !Permute
      to_bgr: False