conv_bn_fuse_pass.cc 12.5 KB
Newer Older
S
Sylwester Fraczek 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h"
#include <functional>
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace framework {
namespace ir {

#define GET_CONV_BN_NODES(pattern_name)                                      \
  /* OPERATORS */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name);                       \
  GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name);           \
  /* CONV inputs */                                                          \
  GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name);         \
  /* CONV outputs */                                                         \
  GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name);               \
  /* BN inputs */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name);               \
  GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name);         \
  /* BN outputs */                                                           \
  GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name); /* Out */         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name);         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name);     \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)

47 48
template <typename UnaryOperation>
LoDTensor tensor_apply(const LoDTensor& vec, UnaryOperation f) {
S
Sylwester Fraczek 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  LoDTensor vec_y;
  vec_y.Resize(vec.dims());
  const float* x = vec.data<float>();
  float* y = vec_y.mutable_data<float>(platform::CPUPlace());
  for (int64_t i = 0; i < vec.numel(); i++) {
    y[i] = f(x[i]);
  }
  return vec_y;
}

void tensor_apply_inplace(LoDTensor* vec, float (*f)(float)) {
  float* data = vec->mutable_data<float>(platform::CPUPlace());
  for (int64_t i = 0; i < vec->numel(); i++) {
    data[i] = f(data[i]);
  }
}

template <typename BinaryOperation>
LoDTensor tensor_apply_eltwise(const LoDTensor& vec_a, const LoDTensor& vec_b,
                               BinaryOperation f) {
  PADDLE_ENFORCE_EQ(vec_a.dims(), vec_b.dims());
  LoDTensor vec_y;
  vec_y.Resize(vec_a.dims());
  const float* a = vec_a.data<float>();
  const float* b = vec_b.data<float>();
  float* y = vec_y.mutable_data<float>(platform::CPUPlace());
  for (int64_t i = 0; i < vec_a.numel(); i++) {
    y[i] = f(a[i], b[i]);
  }
  return vec_y;
}

template <typename BinaryOperation>
LoDTensor tensor_apply_eltwise_broadcast(const LoDTensor& vec_a,
                                         const LoDTensor& vec_b,
                                         BinaryOperation f) {
  PADDLE_ENFORCE_EQ(vec_a.dims().size(), 2);
  PADDLE_ENFORCE_EQ(vec_b.dims().size(), 2);
  PADDLE_ENFORCE_EQ(vec_a.dims()[0], vec_b.dims()[0]);
  PADDLE_ENFORCE_EQ(vec_b.dims()[1], 1);
  LoDTensor vec_y;
  vec_y.Resize(vec_a.dims());
  const float* a = vec_a.data<float>();
  const float* b = vec_b.data<float>();
  float* y = vec_y.mutable_data<float>(platform::CPUPlace());
  size_t a_height = vec_a.dims()[0];
  size_t a_width = vec_a.dims()[1];
  for (size_t h = 0; h < a_height; h++) {
    for (size_t w = 0; w < a_width; ++w) {
      *(y++) = f(*(a++), b[h]);
    }
  }
  return vec_y;
}

// reshape to two dimensions {A, B * C * ...}
void make_tensor_2d(LoDTensor* tensor_to_reshape) {
  auto dims_count = tensor_to_reshape->dims().size();
  PADDLE_ENFORCE_GT(dims_count, 0);

  int size2 = 1;
  for (int i = 1; i < dims_count; i++) {
    size2 *= tensor_to_reshape->dims()[i];
  }
  tensor_to_reshape->Resize(make_ddim({tensor_to_reshape->dims()[0], size2}));
}

void recompute_conv_weights(LoDTensor* weights, LoDTensor* tmp) {
  // remember the weights tensor shape {A, B, C, ...}
  auto weights_shape = weights->dims();
  // reduce the weights to 2d {A, B * C * ...}
  make_tensor_2d(weights);
  // make tmp tensor 2d by adding 1 as second dim {A, 1}
  make_tensor_2d(tmp);

  *weights =
      tensor_apply_eltwise_broadcast(*weights, *tmp, std::multiplies<float>());
  // reshape weights to the original dims {A, B, C, ...}
  weights->Resize(weights_shape);
}

void recompute_bias_and_weights(const Scope* scope,
                                ir::Node* conv_weight,            //
                                const ir::Node& bn_scale,         //
                                const LoDTensor& bn_bias_tensor,  //
                                const ir::Node& bn_mean,          //
                                const ir::Node& bn_variance,      //
136 137
                                LoDTensor* eltwise_y_in_tensor,   //
                                float epsilon) {
S
Sylwester Fraczek 已提交
138 139 140 141 142 143 144 145 146 147 148
  // Re-compute bias of conv2d from BN
  PADDLE_ENFORCE_EQ(eltwise_y_in_tensor->dims(), bn_bias_tensor.dims());

  auto* scale_tensor = scope->FindVar(bn_scale.Name())->GetMutable<LoDTensor>();
  auto* variance_tensor =
      scope->FindVar(bn_variance.Name())->GetMutable<LoDTensor>();
  auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable<LoDTensor>();

  auto std_tensor = LoDTensor();
  std_tensor.Resize(bn_bias_tensor.dims());
  std_tensor =
149
      tensor_apply(*variance_tensor, [&](float x) { return x + epsilon; });
S
Sylwester Fraczek 已提交
150

151 152 153 154 155 156 157
  using EigenVectorArrayMap =
      Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;

  EigenVectorArrayMap std_vec(
      std_tensor.mutable_data<float>(platform::CPUPlace()), std_tensor.numel(),
      1);
  std_vec = std_vec.sqrt();
S
Sylwester Fraczek 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
  auto tmp_tensor =
      tensor_apply_eltwise(*scale_tensor, std_tensor, std::divides<float>());
  auto tensor_minus = tensor_apply_eltwise(*eltwise_y_in_tensor, *mean_tensor,
                                           std::minus<float>());
  auto tensor_mul =
      tensor_apply_eltwise(tensor_minus, tmp_tensor, std::multiplies<float>());
  *eltwise_y_in_tensor =
      tensor_apply_eltwise(tensor_mul, bn_bias_tensor, std::plus<float>());

  // Re-compute weight of conv2d from BN
  auto* current_param =
      scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
  recompute_conv_weights(current_param, &tmp_tensor);
}

std::unique_ptr<ir::Graph> ConvBNFusePass::ApplyImpl(
    std::unique_ptr<ir::Graph> graph) const {
  PADDLE_ENFORCE(graph.get());
  FusePassBase::Init(name_scope_, graph.get());

  auto* scope = param_scope();
  PADDLE_ENFORCE(scope);

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
          ->assert_is_op_input("conv2d", "Input");
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
  conv_bn_pattern(conv_input, false /*with_eltwise_add*/);

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "handle ConvBN fuse";

    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance
    GET_CONV_BN_NODES(conv_bn_pattern);

    // Create eltwise_y (conv bias) variable
    VarDesc eltwise_y_in_desc(
        patterns::PDNodeName(name_scope_, "eltwise_y_in"));
    auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
    auto* eltwise_y_in_tensor =
        scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

    // Initialize eltwise_y
    eltwise_y_in_tensor->Resize(bn_bias_tensor->dims());
    std::fill_n(eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
                eltwise_y_in_tensor->numel(), 0.0f);

    // update weights and biases
218
    float epsilon = boost::get<float>(batch_norm->Op()->GetAttr("epsilon"));
S
Sylwester Fraczek 已提交
219
    recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
220 221
                               *bn_mean, *bn_variance, eltwise_y_in_tensor,
                               epsilon);
S
Sylwester Fraczek 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

    // Create an elementwise add node
    OpDesc desc;
    desc.SetInput("X", std::vector<std::string>({conv_out->Name()}));
    desc.SetInput("Y", std::vector<std::string>({eltwise_y_in_node->Name()}));
    desc.SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
    desc.SetType("elementwise_add");
    desc.SetAttr("axis", 1);
    bool a = boost::get<bool>(conv->Op()->GetAttr("use_mkldnn"));
    desc.SetAttr("use_mkldnn", a);
    auto eltwise_op = g->CreateOpNode(&desc);  // OpDesc will be copied.

    GraphSafeRemoveNodes(graph.get(), {bn_scale, bn_bias, bn_mean, bn_variance,
                                       batch_norm, bn_mean_out, bn_variance_out,
                                       bn_saved_mean, bn_saved_variance});

    PADDLE_ENFORCE(subgraph.count(conv_input));
    IR_NODE_LINK_TO(conv_out, eltwise_op);
    IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op);
    IR_NODE_LINK_TO(eltwise_op, bn_out);

    found_conv_bn_count++;
  };

  gpd(graph.get(), handler);

  AddStatis(found_conv_bn_count);
  return graph;
}

std::unique_ptr<ir::Graph> ConvEltwiseAddBNFusePass::ApplyImpl(
    std::unique_ptr<ir::Graph> graph) const {
  PADDLE_ENFORCE(graph.get());
  FusePassBase::Init(name_scope_, graph.get());

  auto* scope = param_scope();
  PADDLE_ENFORCE(scope);

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
          ->assert_is_op_input("conv2d", "Input");
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
  conv_bn_pattern(conv_input, true /*with_eltwise_add*/);

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "handle ConvBN fuse";

    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance
    GET_CONV_BN_NODES(conv_bn_pattern);
    // OPERATORS
    GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_bn_pattern);
    // BIAS inputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_bn_pattern);
    // BIAS outputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_bn_pattern);

    // Get eltwise_y (conv bias) variable
    auto* eltwise_y_in_tensor =
        scope->FindVar(eltwise_y_in->Name())->GetMutable<LoDTensor>();

    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

    // update weights and biases
295
    float epsilon = boost::get<float>(batch_norm->Op()->GetAttr("epsilon"));
S
Sylwester Fraczek 已提交
296
    recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
297 298
                               *bn_mean, *bn_variance, eltwise_y_in_tensor,
                               epsilon);
S
Sylwester Fraczek 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

    // Update the elementwise_add node
    eltwise->Op()->SetAttr("axis", 1);
    eltwise->Op()->SetOutput("Out", std::vector<std::string>({bn_out->Name()}));

    GraphSafeRemoveNodes(
        graph.get(),
        {bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out,
         bn_variance_out, bn_saved_mean, bn_saved_variance, eltwise_out});

    PADDLE_ENFORCE(subgraph.count(conv_input));
    IR_NODE_LINK_TO(eltwise, bn_out);

    found_conv_bn_count++;
  };

  gpd(graph.get(), handler);

  AddStatis(found_conv_bn_count);
  return graph;
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(conv_bn_fuse_pass, paddle::framework::ir::ConvBNFusePass);
REGISTER_PASS(conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvEltwiseAddBNFusePass);