op_tester.cc 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/benchmark/op_tester.h"
16
#include <fstream>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/timer.h"
#include "paddle/fluid/pybind/pybind.h"

namespace paddle {
namespace operators {
namespace benchmark {

DEFINE_string(op_config_list, "", "Path of op config file.");
32
DEFINE_int32(specified_config_id, -1, "Test the specified op config.");
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

void OpTester::Init(const std::string &filename) {
  Init(OpTesterConfig(filename));
}

void OpTester::Init(const OpTesterConfig &config) {
  config_ = config;

  auto &op_desc_info = framework::OpInfoMap::Instance();
  // Initialize the OpDesc
  if (op_desc_info.Has(config_.op_type)) {
    type_ = config_.op_type;
    op_desc_.SetType(config_.op_type);

    CreateInputVarDesc();
    CreateOutputVarDesc();
  } else {
    LOG(FATAL) << "Op \"" << config_.op_type << "\" is not registered.";
  }

  if (config_.device_id >= 0) {
    place_ = paddle::platform::CUDAPlace(config_.device_id);
  } else {
    place_ = paddle::platform::CPUPlace();
  }

  framework::InitDevices(false);
  scope_.reset(new paddle::framework::Scope());

  op_ = framework::OpRegistry::CreateOp(op_desc_);
  CreateVariables(scope_.get());
}

void OpTester::Run() {
  if (config_.print_debug_string) {
    LOG(INFO) << DebugString();
  }

  // Warm up
  RunImpl();

  platform::Timer timer;
  if (config_.profile) {
    if (platform::is_cpu_place(place_)) {
      platform::EnableProfiler(platform::ProfilerState::kCPU);
    } else {
#ifdef PADDLE_WITH_CUDA
      platform::EnableProfiler(platform::ProfilerState::kAll);
      platform::SetDeviceId(config_.device_id);
#else
      PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
    }

    timer.Start();
    for (int i = config_.repeat; i > 0; --i) {
      RunImpl();
    }
    timer.Pause();
    platform::DisableProfiler(platform::EventSortingKey::kDefault,
                              "op_tester_profiler");
  } else {
    timer.Start();
    for (int i = config_.repeat; i > 0; --i) {
      RunImpl();
    }
    timer.Pause();
  }
  config_.runtime = timer.ElapsedMS() / config_.repeat;
  LOG(INFO) << "=== Run " << config_.repeat
            << " times, latency: " << config_.runtime << " ms ===";
}

void OpTester::RunImpl() {
  op_->Run(*scope_, place_);
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
  scope_->DropKids();
}

std::vector<std::string> OpTester::GetOpProtoInputNames() {
  std::vector<std::string> input_names;
  const framework::proto::OpProto &proto =
      framework::OpInfoMap::Instance().Get(type_).Proto();
  for (int i = 0; i != proto.inputs_size(); ++i) {
    const auto &input = proto.inputs(i);
    input_names.push_back(input.name());
  }
  return input_names;
}

std::vector<std::string> OpTester::GetOpProtoOutputNames() {
  std::vector<std::string> output_names;
  const framework::proto::OpProto &proto =
      framework::OpInfoMap::Instance().Get(type_).Proto();
  for (int i = 0; i != proto.outputs_size(); ++i) {
    const auto &output = proto.outputs(i);
    output_names.push_back(output.name());
  }
  return output_names;
}

void OpTester::CreateInputVarDesc() {
  std::vector<std::string> input_names = GetOpProtoInputNames();
  for (auto &name : input_names) {
    const OpInputConfig *input = config_.GetInput(name);
    if (input == nullptr) {
      LOG(FATAL) << "The input " << name << " of op " << config_.op_type
                 << " is not correctlly provided.";
    }

    std::string var_name = config_.op_type + "." + name;
    framework::VarDesc *var = Var(var_name);
    // Need to support more type
    var->SetType(framework::proto::VarType::LOD_TENSOR);
    var->SetPersistable(false);
    var->SetDataType(framework::proto::VarType::FP32);
    var->SetShape(input->dims);

    op_desc_.SetInput(name, {var_name});
152
    input_lods_[var_name] = input->lod;
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  }
}

void OpTester::CreateOutputVarDesc() {
  std::vector<std::string> output_names = GetOpProtoOutputNames();
  for (auto &name : output_names) {
    std::string var_name = config_.op_type + "." + name;
    framework::VarDesc *var = Var(var_name);
    // Need to support more type
    var->SetType(framework::proto::VarType::LOD_TENSOR);
    var->SetPersistable(false);
    var->SetDataType(framework::proto::VarType::FP32);

    op_desc_.SetOutput(name, {var_name});
  }
}

framework::VarDesc *OpTester::Var(const std::string &name) {
  auto it = vars_.find(name);
  if (it != vars_.end()) {
    return it->second.get();
  }
  auto *var = new framework::VarDesc(name);
  vars_[name].reset(var);
  return var;
}

template <typename T>
void OpTester::SetupTensor(framework::LoDTensor *tensor,
                           const std::vector<int64_t> &shape, T lower,
                           T upper) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);

  T *ptr = tensor->mutable_data<T>(framework::make_ddim(shape), place_);
  if (platform::is_cpu_place(place_)) {
    for (int i = 0; i < tensor->numel(); ++i) {
      ptr[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
    }
  } else {
    framework::LoDTensor cpu_tensor;
    T *cpu_ptr = cpu_tensor.mutable_data<T>(framework::make_ddim(shape),
                                            platform::CPUPlace());
    for (int i = 0; i < cpu_tensor.numel(); ++i) {
      cpu_ptr[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
    }
    TensorCopySync(cpu_tensor, place_, tensor);
  }
}

void OpTester::CreateVariables(framework::Scope *scope) {
  for (auto &item : vars_) {
    auto &var = item.second;
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    auto *ptr = scope->Var(var->Name());
    framework::InitializeVariable(ptr, var->GetType());
    if (var->Persistable()) {
      VLOG(3) << "Create Variable " << var->Name()
              << " global, which pointer is " << ptr;
    } else {
      VLOG(3) << "Create Variable " << var->Name()
              << " locally, which pointer is " << ptr;
    }
  }

222 223 224 225 226 227
  for (auto &item : input_lods_) {
    // Allocate memory for input tensor
    auto &var_name = item.first;
    VLOG(3) << "Allocate memory for tensor " << var_name;

    auto &var_desc = vars_[var_name];
228 229
    std::vector<int64_t> shape = var_desc->GetShape();

230
    auto *var = scope->Var(var_name);
231 232 233
    auto *tensor = var->GetMutable<framework::LoDTensor>();
    SetupTensor<float>(tensor, shape, static_cast<float>(0.0),
                       static_cast<float>(1.0));
234 235 236 237 238 239 240 241

    VLOG(3) << "Set lod for tensor " << var_name;
    std::vector<std::vector<size_t>> &lod_vec = item.second;
    framework::LoD lod;
    for (size_t i = 0; i < lod_vec.size(); ++i) {
      lod.push_back(lod_vec[i]);
    }
    tensor->set_lod(lod);
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  }
}

static std::string GenSpaces(int count) {
  std::stringstream ss;
  for (int i = 0; i < count; ++i) {
    ss << "  ";
  }
  return ss.str();
}

std::string OpTester::DebugString() {
  std::stringstream ss;
  int count = 0;
  for (auto &item : vars_) {
    auto &var = item.second;
    ss << GenSpaces(count++) << "vars {\n";
    ss << GenSpaces(count) << "name: \"" << var->Name() << "\"\n";
    ss << GenSpaces(count++) << "type: {\n";
    ss << GenSpaces(count) << "type: LOD_TENSOR\n";
    ss << GenSpaces(count++) << "lod_tensor {\n";
    ss << GenSpaces(count++) << "tensor {\n";
    ss << GenSpaces(count) << "data_type: FP32\n";
    std::vector<int64_t> shape = var->GetShape();
    for (auto d : shape) {
      ss << GenSpaces(count) << "dims: " << d << "\n";
    }
    ss << GenSpaces(--count) << "}\n";
    ss << GenSpaces(--count) << "}\n";
    ss << GenSpaces(--count) << "}\n";
    ss << GenSpaces(count) << "persistable: " << var->Persistable() << "\n";
    ss << GenSpaces(--count) << "}\n";
  }
  ss << GenSpaces(count++) << "ops {\n";
  for (auto &name : op_desc_.InputNames()) {
    ss << GenSpaces(count++) << "inputs {\n";
    ss << GenSpaces(count) << "parameters: \"" << name << "\"\n";
    ss << GenSpaces(count) << "arguments: \"" << op_desc_.Input(name)[0]
       << "\"\n";
    ss << GenSpaces(--count) << "}\n";
  }
  for (auto &name : op_desc_.OutputNames()) {
    ss << GenSpaces(count++) << "outputs {\n";
    ss << GenSpaces(count) << "parameters: \"" << name << "\"\n";
    ss << GenSpaces(count) << "arguments: \"" << op_desc_.Output(name)[0]
       << "\"\n";
    ss << GenSpaces(--count) << "}\n";
  }
  ss << GenSpaces(count) << "type: " << op_desc_.Type() << "\n";
  ss << GenSpaces(--count) << "}\n";
  return ss.str();
}

TEST(op_tester, base) {
  if (!FLAGS_op_config_list.empty()) {
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    std::ifstream fin(FLAGS_op_config_list, std::ios::in | std::ios::binary);
    PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s",
                   FLAGS_op_config_list.c_str());
    std::vector<OpTesterConfig> op_configs;
    while (!fin.eof()) {
      OpTesterConfig config;
      bool result = config.Init(fin);
      if (result) {
        op_configs.push_back(config);
      }
    }
    if (FLAGS_specified_config_id >= 0 &&
        FLAGS_specified_config_id < static_cast<int>(op_configs.size())) {
      OpTester tester;
      tester.Init(op_configs[FLAGS_specified_config_id]);
      tester.Run();
    } else {
      for (size_t i = 0; i < op_configs.size(); ++i) {
        OpTester tester;
        tester.Init(op_configs[i]);
        tester.Run();
      }
    }
320
  } else {
321
    OpTester tester;
322 323 324 325 326 327 328 329
    OpTesterConfig config;
    config.op_type = "elementwise_add";
    config.inputs.resize(2);
    config.inputs[0].name = "X";
    config.inputs[0].dims = {64, 64};
    config.inputs[1].name = "Y";
    config.inputs[1].dims = {64, 1};
    tester.Init(config);
330
    tester.Run();
331 332 333 334 335 336
  }
}

}  // namespace benchmark
}  // namespace operators
}  // namespace paddle