multiclass_nms_op.cc 16.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
Y
Yipeng 已提交
12

13 14
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_registry.h"
Y
Yipeng 已提交
16
#include "paddle/fluid/operators/detection/poly_util.h"
17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

D
dangqingqing 已提交
24
class MultiClassNMSOp : public framework::OperatorWithKernel {
25 26 27 28
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
29 30
    PADDLE_ENFORCE(ctx->HasInput("BBoxes"),
                   "Input(BBoxes) of MultiClassNMS should not be null.");
31
    PADDLE_ENFORCE(ctx->HasInput("Scores"),
D
dangqingqing 已提交
32 33 34
                   "Input(Scores) of MultiClassNMS should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MultiClassNMS should not be null.");
35

D
dangqingqing 已提交
36
    auto box_dims = ctx->GetInputDim("BBoxes");
37 38
    auto score_dims = ctx->GetInputDim("Scores");

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(box_dims.size(), 3,
                        "The rank of Input(BBoxes) must be 3.");
      PADDLE_ENFORCE_EQ(score_dims.size(), 3,
                        "The rank of Input(Scores) must be 3.");
      PADDLE_ENFORCE(box_dims[2] == 4 || box_dims[2] == 8 ||
                         box_dims[2] == 16 || box_dims[2] == 24 ||
                         box_dims[2] == 32,
                     "The 2nd dimension of Input(BBoxes) must be 4 or 8, "
                     "represents the layout of coordinate "
                     "[xmin, ymin, xmax, ymax] or "
                     "4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
                     "8 points: [xi, yi] i= 1,2,...,8 or "
                     "12 points: [xi, yi] i= 1,2,...,12 or "
                     "16 points: [xi, yi] i= 1,2,...,16");
      PADDLE_ENFORCE_EQ(box_dims[1], score_dims[2],
                        "The 1st dimensiong of Input(BBoxes) must be equal to "
                        "3rd dimension of Input(Scores), which represents the "
                        "predicted bboxes.");
    }
59 60
    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
Y
Yipeng 已提交
61
    ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
62
  }
D
dangqingqing 已提交
63 64 65 66 67

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
Y
Yu Yang 已提交
68
        ctx.Input<framework::LoDTensor>("Scores")->type(),
69
        platform::CPUPlace());
D
dangqingqing 已提交
70
  }
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
};

template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
                          const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

template <class T>
static inline void GetMaxScoreIndex(
    const std::vector<T>& scores, const T threshold, int top_k,
    std::vector<std::pair<T, int>>* sorted_indices) {
  for (size_t i = 0; i < scores.size(); ++i) {
    if (scores[i] > threshold) {
      sorted_indices->push_back(std::make_pair(scores[i], i));
    }
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
                   SortScorePairDescend<int>);
  // Keep top_k scores if needed.
92
  if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
93 94 95 96 97
    sorted_indices->resize(top_k);
  }
}

template <class T>
98
static inline T BBoxArea(const T* box, const bool normalized) {
99
  if (box[2] < box[0] || box[3] < box[1]) {
D
dangqingqing 已提交
100 101 102
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
103 104 105 106 107 108
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
D
dangqingqing 已提交
109
      // If coordinate values are not within range [0, 1].
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
static inline T JaccardOverlap(const T* box1, const T* box2,
                               const bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    const T inter_w = inter_xmax - inter_xmin;
    const T inter_h = inter_ymax - inter_ymin;
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

Y
Yipeng 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
template <class T>
T PolyIoU(const T* box1, const T* box2, const size_t box_size,
          const bool normalized) {
  T bbox1_area = PolyArea<T>(box1, box_size, normalized);
  T bbox2_area = PolyArea<T>(box2, box_size, normalized);
  T inter_area = PolyOverlapArea<T>(box1, box2, box_size, normalized);
  if (bbox1_area == 0 || bbox2_area == 0 || inter_area == 0) {
    // If coordinate values are is invalid
    // if area size <= 0,  return 0.
    return T(0.);
  } else {
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

150
template <typename T>
D
dangqingqing 已提交
151
class MultiClassNMSKernel : public framework::OpKernel<T> {
152 153 154 155 156 157 158
 public:
  void NMSFast(const Tensor& bbox, const Tensor& scores,
               const T score_threshold, const T nms_threshold, const T eta,
               const int64_t top_k, std::vector<int>* selected_indices) const {
    // The total boxes for each instance.
    int64_t num_boxes = bbox.dims()[0];
    // 4: [xmin ymin xmax ymax]
Y
Yipeng 已提交
159 160
    // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
    // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
161 162 163 164 165 166 167 168 169 170 171 172 173 174
    int64_t box_size = bbox.dims()[1];

    std::vector<T> scores_data(num_boxes);
    std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
    std::vector<std::pair<T, int>> sorted_indices;
    GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

    selected_indices->clear();
    T adaptive_threshold = nms_threshold;
    const T* bbox_data = bbox.data<T>();

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
175
      for (size_t k = 0; k < selected_indices->size(); ++k) {
176 177
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
Y
Yipeng 已提交
178 179 180 181
          T overlap = T(0.);
          // 4: [xmin ymin xmax ymax]
          if (box_size == 4) {
            overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
182
                                        bbox_data + kept_idx * box_size, true);
Y
Yipeng 已提交
183 184 185 186 187 188 189 190
          }
          // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
          if (box_size == 8 || box_size == 16 || box_size == 24 ||
              box_size == 32) {
            overlap =
                PolyIoU<T>(bbox_data + idx * box_size,
                           bbox_data + kept_idx * box_size, box_size, true);
          }
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
  }

D
dangqingqing 已提交
206
  void MultiClassNMS(const framework::ExecutionContext& ctx,
207
                     const Tensor& scores, const Tensor& bboxes,
208 209
                     std::map<int, std::vector<int>>* indices,
                     int* num_nmsed_out) const {
D
dangqingqing 已提交
210 211 212
    int64_t background_label = ctx.Attr<int>("background_label");
    int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
213 214
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
D
dangqingqing 已提交
215
    T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
216 217 218 219 220 221 222 223

    int64_t class_num = scores.dims()[0];
    int64_t predict_dim = scores.dims()[1];
    int num_det = 0;
    for (int64_t c = 0; c < class_num; ++c) {
      if (c == background_label) continue;
      Tensor score = scores.Slice(c, c + 1);
      NMSFast(bboxes, score, score_threshold, nms_threshold, nms_eta, nms_top_k,
224 225
              &((*indices)[c]));
      num_det += (*indices)[c].size();
226 227
    }

228
    *num_nmsed_out = num_det;
229 230 231
    const T* scores_data = scores.data<T>();
    if (keep_top_k > -1 && num_det > keep_top_k) {
      std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
232
      for (const auto& it : *indices) {
233 234 235
        int label = it.first;
        const T* sdata = scores_data + label * predict_dim;
        const std::vector<int>& label_indices = it.second;
236
        for (size_t j = 0; j < label_indices.size(); ++j) {
237 238 239 240 241 242 243
          int idx = label_indices[j];
          PADDLE_ENFORCE_LT(idx, predict_dim);
          score_index_pairs.push_back(
              std::make_pair(sdata[idx], std::make_pair(label, idx)));
        }
      }
      // Keep top k results per image.
244 245
      std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
                       SortScorePairDescend<std::pair<int, int>>);
246 247 248 249
      score_index_pairs.resize(keep_top_k);

      // Store the new indices.
      std::map<int, std::vector<int>> new_indices;
250
      for (size_t j = 0; j < score_index_pairs.size(); ++j) {
251 252 253 254
        int label = score_index_pairs[j].second.first;
        int idx = score_index_pairs[j].second.second;
        new_indices[label].push_back(idx);
      }
255 256
      new_indices.swap(*indices);
      *num_nmsed_out = keep_top_k;
257 258 259
    }
  }

D
dangqingqing 已提交
260
  void MultiClassOutput(const Tensor& scores, const Tensor& bboxes,
261
                        const std::map<int, std::vector<int>>& selected_indices,
262
                        Tensor* outs) const {
Y
Yipeng 已提交
263 264 265
    int64_t predict_dim = scores.dims()[1];
    int64_t box_size = bboxes.dims()[1];
    int64_t out_dim = bboxes.dims()[1] + 2;
266 267 268 269 270 271 272 273
    auto* scores_data = scores.data<T>();
    auto* bboxes_data = bboxes.data<T>();
    auto* odata = outs->data<T>();

    int count = 0;
    for (const auto& it : selected_indices) {
      int label = it.first;
      const T* sdata = scores_data + label * predict_dim;
D
dangqingqing 已提交
274
      const std::vector<int>& indices = it.second;
275
      for (size_t j = 0; j < indices.size(); ++j) {
276
        int idx = indices[j];
Y
Yipeng 已提交
277 278 279 280 281
        const T* bdata = bboxes_data + idx * box_size;
        odata[count * out_dim] = label;           // label
        odata[count * out_dim + 1] = sdata[idx];  // score
        // xmin, ymin, xmax, ymax or multi-points coordinates
        std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
D
dangqingqing 已提交
282
        count++;
283 284 285 286 287
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
D
dangqingqing 已提交
288
    auto* boxes = ctx.Input<Tensor>("BBoxes");
289 290 291 292 293
    auto* scores = ctx.Input<Tensor>("Scores");
    auto* outs = ctx.Output<LoDTensor>("Out");

    auto score_dims = scores->dims();

D
dangqingqing 已提交
294
    int64_t batch_size = score_dims[0];
295 296
    int64_t class_num = score_dims[1];
    int64_t predict_dim = score_dims[2];
297
    int64_t box_dim = boxes->dims()[2];
Y
Yipeng 已提交
298
    int64_t out_dim = boxes->dims()[2] + 2;
299 300 301 302 303 304

    std::vector<std::map<int, std::vector<int>>> all_indices;
    std::vector<size_t> batch_starts = {0};
    for (int64_t i = 0; i < batch_size; ++i) {
      Tensor ins_score = scores->Slice(i, i + 1);
      ins_score.Resize({class_num, predict_dim});
305 306 307 308

      Tensor ins_boxes = boxes->Slice(i, i + 1);
      ins_boxes.Resize({predict_dim, box_dim});

309 310
      std::map<int, std::vector<int>> indices;
      int num_nmsed_out = 0;
311
      MultiClassNMS(ctx, ins_score, ins_boxes, &indices, &num_nmsed_out);
312 313 314 315 316 317
      all_indices.push_back(indices);
      batch_starts.push_back(batch_starts.back() + num_nmsed_out);
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
318 319
      T* od = outs->mutable_data<T>({1}, ctx.GetPlace());
      od[0] = -1;
320
    } else {
Y
Yipeng 已提交
321
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
322 323 324
      for (int64_t i = 0; i < batch_size; ++i) {
        Tensor ins_score = scores->Slice(i, i + 1);
        ins_score.Resize({class_num, predict_dim});
325 326 327 328

        Tensor ins_boxes = boxes->Slice(i, i + 1);
        ins_boxes.Resize({predict_dim, box_dim});

329 330 331 332
        int64_t s = batch_starts[i];
        int64_t e = batch_starts[i + 1];
        if (e > s) {
          Tensor out = outs->Slice(s, e);
333
          MultiClassOutput(ins_score, ins_boxes, all_indices[i], &out);
334 335 336 337 338 339 340 341 342 343 344
        }
      }
    }

    framework::LoD lod;
    lod.emplace_back(batch_starts);

    outs->set_lod(lod);
  }
};

D
dangqingqing 已提交
345
class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
346
 public:
Y
Yu Yang 已提交
347
  void Make() override {
D
dangqingqing 已提交
348
    AddInput("BBoxes",
Y
Yipeng 已提交
349 350
             "(Tensor) A 3-D Tensor with shape "
             "[N, M, 4 or 8 16 24 32] represents the "
351 352
             "predicted locations of M bounding bboxes, N is the batch size. "
             "Each bounding box has four coordinate values and the layout is "
Y
Yipeng 已提交
353
             "[xmin, ymin, xmax, ymax], when box size equals to 4.");
D
dangqingqing 已提交
354 355
    AddInput("Scores",
             "(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
D
dangqingqing 已提交
356 357 358 359
             "predicted confidence predictions. N is the batch size, C is the "
             "class number, M is number of bounding boxes. For each category "
             "there are total M scores which corresponding M bounding boxes. "
             " Please note, M is equal to the 1st dimension of BBoxes. ");
D
dangqingqing 已提交
360
    AddAttr<int>(
361
        "background_label",
362
        "(int, defalut: 0) "
D
dangqingqing 已提交
363 364
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
365
        .SetDefault(0);
D
dangqingqing 已提交
366 367
    AddAttr<float>("score_threshold",
                   "(float) "
D
dangqingqing 已提交
368 369
                   "Threshold to filter out bounding boxes with low "
                   "confidence score. If not provided, consider all boxes.");
D
dangqingqing 已提交
370 371 372 373 374
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections to be kept according to the "
                 "confidences aftern the filtering detections based on "
                 "score_threshold");
375 376
    AddAttr<float>("nms_threshold",
                   "(float, defalut: 0.3) "
D
dangqingqing 已提交
377
                   "The threshold to be used in NMS.")
378 379 380
        .SetDefault(0.3);
    AddAttr<float>("nms_eta",
                   "(float) "
D
dangqingqing 已提交
381
                   "The parameter for adaptive NMS.")
382
        .SetDefault(1.0);
D
dangqingqing 已提交
383 384 385 386
    AddAttr<int>("keep_top_k",
                 "(int64_t) "
                 "Number of total bboxes to be kept per image after NMS "
                 "step. -1 means keeping all bboxes after NMS step.");
387 388 389
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
Y
Yipeng 已提交
390 391 392 393 394 395
              "[label, confidence, xmin, ymin, xmax, ymax] or "
              "(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
              "detections. Each row has 10 values: "
              "[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
              "total number of detections in this mini-batch."
              "For each instance, "
396 397 398 399
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
D
dangqingqing 已提交
400
This operator is to do multi-class non maximum suppression (NMS) on a batched
401 402
of boxes and scores.

D
dangqingqing 已提交
403 404 405 406 407 408 409
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.

410
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
D
dangqingqing 已提交
411
per image if keep_top_k is larger than -1.
412

D
dangqingqing 已提交
413
This operator support multi-class and batched inputs. It applying NMS
414 415 416 417 418 419
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image. If there is no detected boxes
for all images, all the elements in LoD are 0, and the Out only contains one
value which is -1.
420 421 422 423 424 425 426 427
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
D
dangqingqing 已提交
428 429
REGISTER_OPERATOR(multiclass_nms, ops::MultiClassNMSOp,
                  ops::MultiClassNMSOpMaker,
430
                  paddle::framework::EmptyGradOpMaker);
D
dangqingqing 已提交
431 432
REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MultiClassNMSKernel<float>,
                       ops::MultiClassNMSKernel<double>);