trt_models_tester.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
N
nhzlx 已提交
14 15 16 17

#include <gflags/gflags.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
18

19
#include "paddle/fluid/inference/tests/api/tester_helper.h"
N
nhzlx 已提交
20 21

namespace paddle {
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
namespace inference {

DEFINE_bool(use_tensorrt, true, "Test the performance of TensorRT engine.");
DEFINE_string(prog_filename, "", "Name of model file.");
DEFINE_string(param_filename, "", "Name of parameters file.");

template <typename ConfigType>
void SetConfig(ConfigType* config, std::string model_dir, bool use_gpu,
               bool use_tensorrt = false, int batch_size = -1) {
  if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
    config->prog_file = model_dir + "/" + FLAGS_prog_filename;
    config->param_file = model_dir + "/" + FLAGS_param_filename;
  } else {
    config->model_dir = model_dir;
  }
  if (use_gpu) {
    config->use_gpu = true;
    config->device = 0;
    config->fraction_of_gpu_memory = 0.15;
  }
N
nhzlx 已提交
42 43
}

44
template <>
45 46 47
void SetConfig<AnalysisConfig>(AnalysisConfig* config, std::string model_dir,
                               bool use_gpu, bool use_tensorrt,
                               int batch_size) {
48
  if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
49 50
    config->SetModel(model_dir + "/" + FLAGS_prog_filename,
                     model_dir + "/" + FLAGS_param_filename);
51
  } else {
52
    config->SetModel(model_dir);
53 54
  }
  if (use_gpu) {
55
    config->EnableUseGpu(100, 0);
56
    if (use_tensorrt) {
N
nhzlx 已提交
57 58
      config->EnableTensorRtEngine(1 << 10, batch_size, 3,
                                   AnalysisConfig::Precision::kFloat32, false);
59 60 61 62
      config->pass_builder()->DeletePass("conv_bn_fuse_pass");
      config->pass_builder()->DeletePass("fc_fuse_pass");
      config->pass_builder()->TurnOnDebug();
    } else {
63
      config->SwitchIrOptim();
64 65
    }
  }
66 67
}

68 69 70 71 72 73 74
void profile(std::string model_dir, bool use_analysis, bool use_tensorrt) {
  std::vector<std::vector<PaddleTensor>> inputs_all;
  if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
    SetFakeImageInput(&inputs_all, model_dir, true, FLAGS_prog_filename,
                      FLAGS_param_filename);
  } else {
    SetFakeImageInput(&inputs_all, model_dir, false, "__model__", "");
N
nhzlx 已提交
75 76
  }

77
  std::vector<std::vector<PaddleTensor>> outputs;
78
  if (use_analysis || use_tensorrt) {
79
    AnalysisConfig config;
80
    config.EnableUseGpu(100, 0);
81
    config.pass_builder()->TurnOnDebug();
82 83
    SetConfig<AnalysisConfig>(&config, model_dir, true, use_tensorrt,
                              FLAGS_batch_size);
84 85 86 87 88 89 90 91
    TestPrediction(reinterpret_cast<PaddlePredictor::Config*>(&config),
                   inputs_all, &outputs, FLAGS_num_threads, true);
  } else {
    NativeConfig config;
    SetConfig<NativeConfig>(&config, model_dir, true, false);
    TestPrediction(reinterpret_cast<PaddlePredictor::Config*>(&config),
                   inputs_all, &outputs, FLAGS_num_threads, false);
  }
92 93
}

94 95 96 97 98 99 100 101
void compare(std::string model_dir, bool use_tensorrt) {
  std::vector<std::vector<PaddleTensor>> inputs_all;
  if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
    SetFakeImageInput(&inputs_all, model_dir, true, FLAGS_prog_filename,
                      FLAGS_param_filename);
  } else {
    SetFakeImageInput(&inputs_all, model_dir, false, "__model__", "");
  }
102

103 104 105
  AnalysisConfig analysis_config;
  SetConfig<AnalysisConfig>(&analysis_config, model_dir, true, use_tensorrt,
                            FLAGS_batch_size);
T
Tao Luo 已提交
106 107 108
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config*>(&analysis_config),
      inputs_all);
109
}
110

N
nhzlx 已提交
111
void compare_continuous_input(std::string model_dir, bool use_tensorrt) {
112 113 114
  AnalysisConfig analysis_config;
  SetConfig<AnalysisConfig>(&analysis_config, model_dir, true, use_tensorrt,
                            FLAGS_batch_size);
N
nhzlx 已提交
115 116 117 118 119 120 121 122
  auto config =
      reinterpret_cast<const PaddlePredictor::Config*>(&analysis_config);
  auto native_pred = CreateTestPredictor(config, false);
  auto analysis_pred = CreateTestPredictor(config, true);
  for (int i = 0; i < 100; i++) {
    std::vector<std::vector<PaddleTensor>> inputs_all;
    if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
      SetFakeImageInput(&inputs_all, model_dir, true, FLAGS_prog_filename,
N
nhzlx 已提交
123
                        FLAGS_param_filename, nullptr, i);
N
nhzlx 已提交
124
    } else {
N
nhzlx 已提交
125 126
      SetFakeImageInput(&inputs_all, model_dir, false, "__model__", "", nullptr,
                        i);
N
nhzlx 已提交
127 128 129 130 131 132
    }
    CompareNativeAndAnalysis(native_pred.get(), analysis_pred.get(),
                             inputs_all);
  }
}

133 134 135 136
TEST(TensorRT_mobilenet, compare) {
  std::string model_dir = FLAGS_infer_model + "/mobilenet";
  compare(model_dir, /* use_tensorrt */ true);
}
137

138 139 140 141
TEST(TensorRT_resnet50, compare) {
  std::string model_dir = FLAGS_infer_model + "/resnet50";
  compare(model_dir, /* use_tensorrt */ true);
}
142

143 144 145 146
TEST(TensorRT_resnext50, compare) {
  std::string model_dir = FLAGS_infer_model + "/resnext50";
  compare(model_dir, /* use_tensorrt */ true);
}
147

148 149
TEST(TensorRT_resnext50, profile) {
  std::string model_dir = FLAGS_infer_model + "/resnext50";
N
nhzlx 已提交
150 151 152
  // Set FLAGS_record_benchmark to true to record benchmark to file.
  // FLAGS_record_benchmark=true;
  FLAGS_model_name = "resnext50";
153 154
  profile(model_dir, /* use_analysis */ true, FLAGS_use_tensorrt);
}
155

156 157 158 159 160
TEST(resnext50, compare_analysis_native) {
  std::string model_dir = FLAGS_infer_model + "/resnext50";
  compare(model_dir, false /*use tensorrt*/);
}

161 162
TEST(TensorRT_mobilenet, analysis) {
  std::string model_dir = FLAGS_infer_model + "/" + "mobilenet";
163 164 165 166 167
  compare(model_dir, false /* use_tensorrt */);
}

TEST(AnalysisPredictor, use_gpu) {
  std::string model_dir = FLAGS_infer_model + "/" + "mobilenet";
168 169 170
  AnalysisConfig config;
  config.EnableUseGpu(100, 0);
  config.SetModel(model_dir);
171 172 173 174 175 176 177 178 179 180
  config.pass_builder()->TurnOnDebug();

  std::vector<std::vector<PaddleTensor>> inputs_all;
  auto predictor = CreatePaddlePredictor(config);
  SetFakeImageInput(&inputs_all, model_dir, false, "__model__", "");

  std::vector<PaddleTensor> outputs;
  for (auto& input : inputs_all) {
    ASSERT_TRUE(predictor->Run(input, &outputs));
  }
N
nhzlx 已提交
181 182
}

Y
Yan Chunwei 已提交
183 184 185 186 187
TEST(TensorRT_mobilenet, profile) {
  std::string model_dir = FLAGS_infer_model + "/" + "mobilenet";
  profile(model_dir, true, false);
}

N
nhzlx 已提交
188 189 190 191 192 193 194 195 196 197
TEST(resnet50, compare_continuous_input) {
  std::string model_dir = FLAGS_infer_model + "/resnet50";
  compare_continuous_input(model_dir, true);
}

TEST(resnet50, compare_continuous_input_native) {
  std::string model_dir = FLAGS_infer_model + "/resnet50";
  compare_continuous_input(model_dir, false);
}

198
}  // namespace inference
N
nhzlx 已提交
199
}  // namespace paddle