roi_extractor.py 2.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from ppdet.core.workspace import register
from ppdet.modeling import ops


@register
class RoIAlign(object):
    def __init__(self,
                 resolution=14,
                 sampling_ratio=0,
                 canconical_level=4,
                 canonical_size=224,
                 start_level=0,
                 end_level=3):
        super(RoIAlign, self).__init__()
        self.resolution = resolution
        self.sampling_ratio = sampling_ratio
        self.canconical_level = canconical_level
        self.canonical_size = canonical_size
        self.start_level = start_level
        self.end_level = end_level

    def __call__(self, feats, rois, spatial_scale):
        roi, rois_num = rois
39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
        if self.start_level == self.end_level:
            rois_feat = ops.roi_align(
                feats[self.start_level],
                roi,
                self.resolution,
                spatial_scale,
                rois_num=rois_num)
            return rois_feat
        offset = 2
        k_min = self.start_level + offset
        k_max = self.end_level + offset
        rois_dist, restore_index, rois_num_dist = ops.distribute_fpn_proposals(
            roi,
            k_min,
            k_max,
            self.canconical_level,
            self.canonical_size,
            rois_num=rois_num)
        rois_feat_list = []
        for lvl in range(self.start_level, self.end_level + 1):
            roi_feat = ops.roi_align(
                feats[lvl],
                rois_dist[lvl],
                self.resolution,
                spatial_scale[lvl],
                sampling_ratio=self.sampling_ratio,
                rois_num=rois_num_dist[lvl])
            rois_feat_list.append(roi_feat)
        rois_feat_shuffle = paddle.concat(rois_feat_list)
        rois_feat = paddle.gather(rois_feat_shuffle, restore_index)

        return rois_feat