conv2d_op.cc 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

H
hedaoyuan 已提交
15
#include "paddle/operators/gemm_conv2d_op.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

int outputSize(int input_size, int filter_size, int padding, int stride) {
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class Conv2DOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Q
Qiao Longfei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of Conv2DOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Filter"),
                   "Input(Filter) of Conv2DOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Output"),
                   "Output(Output) of Conv2DOp should not be null.");

    auto in_dims = ctx->GetInputDim("Input");
    auto filter_dims = ctx->GetInputDim("Filter");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
    int groups = ctx->Attrs().Get<int>("groups");
    int input_channels = in_dims[1];
    int output_channels = filter_dims[0];

    PADDLE_ENFORCE_EQ(in_dims.size(), 4, "Conv2DOp input should be 4-D.");
    PADDLE_ENFORCE_EQ(filter_dims.size(), 4, "Conv2DOp filter should be 4-D.");
    PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
H
hedaoyuan 已提交
49 50 51 52 53
                      "The number of input channels should be equal to filter "
                      "channels * groups.");
    PADDLE_ENFORCE_EQ(
        output_channels % groups, 0,
        "The number of output channels should be divided by groups.");
54 55

    auto output_height =
Q
Qiao Longfei 已提交
56
        outputSize(in_dims[2], filter_dims[2], paddings[0], strides[0]);
57
    auto output_width =
Q
Qiao Longfei 已提交
58 59 60
        outputSize(in_dims[3], filter_dims[3], paddings[1], strides[1]);
    ctx->SetOutputDim(
        "Output", {in_dims[0], filter_dims[0], output_height, output_width});
61 62 63
  }
};

H
hedaoyuan 已提交
64
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
65
 public:
Q
Qiao Longfei 已提交
66
  Conv2DOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
67 68 69 70 71 72 73 74 75 76
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "Input",
        "The input tensor of convolution operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of image.");
    AddInput(
        "Filter",
        "The filter tensor of convolution operator."
        "The format of the filter tensor is MCHW, where M is the number of "
H
hedaoyuan 已提交
77 78 79 80
        "output image channels, C is the number of input image channels, "
        "H and W is height and width of filter. "
        "If the groups attribute is greater than 1, C equal the number of "
        "input image channels divided by the groups.");
81 82 83
    AddOutput("Output",
              "The output tensor of convolution operator."
              "The format of output tensor is also NCHW.");
H
hedaoyuan 已提交
84 85 86 87
    AddAttr<std::vector<int>>("strides", "strides of convolution operator.")
        .SetDefault({1, 1});
    AddAttr<std::vector<int>>("paddings", "paddings of convolution operator.")
        .SetDefault({0, 0});
H
hedaoyuan 已提交
88 89 90 91 92 93 94 95
    AddAttr<int>(
        "groups",
        "group size of convolution operator. "
        "Refer to grouped convolution in Alex Krizhevsky's paper: "
        "when group=2, the first half of the filters are only connected to the "
        "first half of the input channels, and the second half only connected "
        "to the second half.")
        .SetDefault(1);
H
hedaoyuan 已提交
96 97 98 99 100
    AddComment(R"DOC(
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
)DOC");
101 102 103 104 105 106 107 108
  }
};

class Conv2DOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Q
Qiao Longfei 已提交
109 110 111 112 113 114 115 116 117
  void InferShape(framework::InferShapeContextBase* ctx) const override {
    auto in_dims = ctx->GetInputDim("Input");
    auto filter_dims = ctx->GetInputDim("Filter");
    if (ctx->HasOutput(framework::GradVarName("Input"))) {
      ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Filter"))) {
      ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
    }
H
hedaoyuan 已提交
118
  }
119 120 121 122 123 124
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hedaoyuan 已提交
125
REGISTER_OP(conv2d, ops::Conv2DOp, ops::Conv2DOpMaker, conv2d_grad,
126 127 128
            ops::Conv2DOpGrad);

REGISTER_OP_CPU_KERNEL(
H
hedaoyuan 已提交
129
    conv2d, ops::GemmConv2DKernel<paddle::platform::CPUPlace, float>);
H
hedaoyuan 已提交
130
REGISTER_OP_CPU_KERNEL(
H
hedaoyuan 已提交
131
    conv2d_grad, ops::GemmConvGrad2DKernel<paddle::platform::CPUPlace, float>);