rpn_head.py 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal
from paddle.regularizer import L2Decay

from ppdet.core.workspace import register
from ppdet.modeling import ops

from .anchor_generator import AnchorGenerator
from .target_layer import RPNTargetAssign
from .proposal_generator import ProposalGenerator


class RPNFeat(nn.Layer):
    def __init__(self, feat_in=1024, feat_out=1024):
        super(RPNFeat, self).__init__()
        # rpn feat is shared with each level
        self.rpn_conv = nn.Conv2D(
            in_channels=feat_in,
            out_channels=feat_out,
            kernel_size=3,
            padding=1,
            weight_attr=paddle.ParamAttr(initializer=Normal(
                mean=0., std=0.01)))

    def forward(self, feats):
        rpn_feats = []
        for feat in feats:
            rpn_feats.append(F.relu(self.rpn_conv(feat)))
        return rpn_feats


@register
class RPNHead(nn.Layer):
    def __init__(self,
                 anchor_generator=AnchorGenerator().__dict__,
                 rpn_target_assign=RPNTargetAssign().__dict__,
                 train_proposal=ProposalGenerator(12000, 2000).__dict__,
                 test_proposal=ProposalGenerator().__dict__,
                 in_channel=1024):
        super(RPNHead, self).__init__()
        self.anchor_generator = anchor_generator
        self.rpn_target_assign = rpn_target_assign
        self.train_proposal = train_proposal
        self.test_proposal = test_proposal
        if isinstance(anchor_generator, dict):
            self.anchor_generator = AnchorGenerator(**anchor_generator)
        if isinstance(rpn_target_assign, dict):
            self.rpn_target_assign = RPNTargetAssign(**rpn_target_assign)
        if isinstance(train_proposal, dict):
            self.train_proposal = ProposalGenerator(**train_proposal)
        if isinstance(test_proposal, dict):
            self.test_proposal = ProposalGenerator(**test_proposal)

        num_anchors = self.anchor_generator.num_anchors
        self.rpn_feat = RPNFeat(in_channel, in_channel)
        # rpn head is shared with each level
        # rpn roi classification scores
        self.rpn_rois_score = nn.Conv2D(
            in_channels=in_channel,
            out_channels=num_anchors,
            kernel_size=1,
            padding=0,
            weight_attr=paddle.ParamAttr(initializer=Normal(
                mean=0., std=0.01)))

        # rpn roi bbox regression deltas
        self.rpn_rois_delta = nn.Conv2D(
            in_channels=in_channel,
            out_channels=4 * num_anchors,
            kernel_size=1,
            padding=0,
            weight_attr=paddle.ParamAttr(initializer=Normal(
                mean=0., std=0.01)))

    @classmethod
    def from_config(cls, cfg, input_shape):
        # FPN share same rpn head
        if isinstance(input_shape, (list, tuple)):
            input_shape = input_shape[0]
        return {'in_channel': input_shape.channels}

    def forward(self, feats, inputs):
        rpn_feats = self.rpn_feat(feats)
        scores = []
        deltas = []

        for rpn_feat in rpn_feats:
            rrs = self.rpn_rois_score(rpn_feat)
            rrd = self.rpn_rois_delta(rpn_feat)
            scores.append(rrs)
            deltas.append(rrd)

        anchors = self.anchor_generator(rpn_feats)

        rois, rois_num = self._gen_proposal(scores, deltas, anchors, inputs)

        if self.training:
            loss = self.get_loss(scores, deltas, anchors, inputs)
            return rois, rois_num, loss
        else:
            return rois, rois_num, None

    def _gen_proposal(self, scores, bbox_deltas, anchors, inputs):
        """
        scores (list[Tensor]): Multi-level scores prediction 
        bbox_deltas (list[Tensor]): Multi-level deltas prediction
        anchors (list[Tensor]): Multi-level anchors 
        inputs (dict): ground truth info
        """
        prop_gen = self.train_proposal if self.training else self.test_proposal
        im_shape = inputs['im_shape']
        batch_size = im_shape.shape[0]
        rpn_rois_list = [[] for i in range(batch_size)]
        rpn_prob_list = [[] for i in range(batch_size)]
        rpn_rois_num_list = [[] for i in range(batch_size)]
        # Generate proposals for each level and each batch.
        # Discard batch-computing to avoid sorting bbox cross different batches.
        for rpn_score, rpn_delta, anchor in zip(scores, bbox_deltas, anchors):
            for i in range(batch_size):
                rpn_rois, rpn_rois_prob, rpn_rois_num, post_nms_top_n = prop_gen(
                    scores=rpn_score[i:i + 1],
                    bbox_deltas=rpn_delta[i:i + 1],
                    anchors=anchor,
                    im_shape=im_shape[i:i + 1])
                if rpn_rois.shape[0] > 0:
                    rpn_rois_list[i].append(rpn_rois)
                    rpn_prob_list[i].append(rpn_rois_prob)
                    rpn_rois_num_list[i].append(rpn_rois_num)

        # Collect multi-level proposals for each batch 
        # Get 'topk' of them as final output 
        rois_collect = []
        rois_num_collect = []
        for i in range(batch_size):
            if len(scores) > 1:
                rpn_rois = paddle.concat(rpn_rois_list[i])
                rpn_prob = paddle.concat(rpn_prob_list[i]).flatten()
                if rpn_prob.shape[0] > post_nms_top_n:
                    topk_prob, topk_inds = paddle.topk(rpn_prob, post_nms_top_n)
                    topk_rois = paddle.gather(rpn_rois, topk_inds)
                else:
                    topk_rois = rpn_rois
                    topk_prob = rpn_prob
            else:
                topk_rois = rpn_rois_list[i][0]
                topk_prob = rpn_prob_list[i][0].flatten()
            rois_collect.append(topk_rois)
            rois_num_collect.append(paddle.shape(topk_rois)[0])
        rois_num_collect = paddle.concat(rois_num_collect)
        return rois_collect, rois_num_collect

    def get_loss(self, pred_scores, pred_deltas, anchors, inputs):
        """
        pred_scores (list[Tensor]): Multi-level scores prediction 
        pred_deltas (list[Tensor]): Multi-level deltas prediction
        anchors (list[Tensor]): Multi-level anchors
        inputs (dict): ground truth info, including im, gt_bbox, gt_score
        """
        anchors = [paddle.reshape(a, shape=(-1, 4)) for a in anchors]
        anchors = paddle.concat(anchors)

        scores = [
            paddle.reshape(
                paddle.transpose(
                    v, perm=[0, 2, 3, 1]),
                shape=(v.shape[0], -1, 1)) for v in pred_scores
        ]
        scores = paddle.concat(scores, axis=1)

        deltas = [
            paddle.reshape(
                paddle.transpose(
                    v, perm=[0, 2, 3, 1]),
                shape=(v.shape[0], -1, 4)) for v in pred_deltas
        ]
        deltas = paddle.concat(deltas, axis=1)

        score_tgt, bbox_tgt, loc_tgt, norm = self.rpn_target_assign(inputs,
                                                                    anchors)

        scores = paddle.reshape(x=scores, shape=(-1, ))
        deltas = paddle.reshape(x=deltas, shape=(-1, 4))

        score_tgt = paddle.concat(score_tgt)
        score_tgt.stop_gradient = True

        pos_mask = score_tgt == 1
        pos_ind = paddle.nonzero(pos_mask)

        valid_mask = score_tgt >= 0
        valid_ind = paddle.nonzero(valid_mask)

        # cls loss
        score_pred = paddle.gather(scores, valid_ind)
        score_label = paddle.gather(score_tgt, valid_ind).cast('float32')
        score_label.stop_gradient = True
        loss_rpn_cls = F.binary_cross_entropy_with_logits(
            logit=score_pred, label=score_label, reduction="sum")

        # reg loss
        loc_pred = paddle.gather(deltas, pos_ind)
        loc_tgt = paddle.concat(loc_tgt)
        loc_tgt = paddle.gather(loc_tgt, pos_ind)
        loc_tgt.stop_gradient = True
        loss_rpn_reg = paddle.abs(loc_pred - loc_tgt).sum()
        return {
            'loss_rpn_cls': loss_rpn_cls / norm,
            'loss_rpn_reg': loss_rpn_reg / norm
        }