cornernet_squeeze.py 5.4 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

from paddle import fluid

from ppdet.core.workspace import register
import numpy as np

__all__ = ['CornerNetSqueeze']


def rescale_bboxes(bboxes, ratios, borders):
    x1, y1, x2, y2 = fluid.layers.split(bboxes, 4)
    x1 = x1 / ratios[:, 1] - borders[:, 2]
    x2 = x2 / ratios[:, 1] - borders[:, 2]
    y1 = y1 / ratios[:, 0] - borders[:, 0]
    y2 = y2 / ratios[:, 0] - borders[:, 0]
    return fluid.layers.concat([x1, y1, x2, y2], axis=2)


@register
class CornerNetSqueeze(object):
    """
    """
    __category__ = 'architecture'
    __inject__ = ['backbone', 'corner_head', 'fpn']
    __shared__ = ['num_classes']

    def __init__(self,
                 backbone,
                 corner_head='CornerHead',
                 num_classes=80,
                 fpn=None):
        super(CornerNetSqueeze, self).__init__()
        self.backbone = backbone
        self.corner_head = corner_head
        self.num_classes = num_classes
        self.fpn = fpn

    def build(self, feed_vars, mode='train'):
        im = feed_vars['image']
        body_feats = self.backbone(im)
        if self.fpn is not None:
            body_feats, _ = self.fpn.get_output(body_feats)
62
            body_feats = [list(body_feats.values())[-1]]
W
wangguanzhong 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        if mode == 'train':
            target_vars = [
                'tl_heatmaps', 'br_heatmaps', 'tag_masks', 'tl_regrs',
                'br_regrs', 'tl_tags', 'br_tags'
            ]
            target = {key: feed_vars[key] for key in target_vars}
            self.corner_head.get_output(body_feats)
            loss = self.corner_head.get_loss(target)
            return loss

        elif mode == 'test':
            ratios = feed_vars['ratios']
            borders = feed_vars['borders']
            bboxes, scores, tl_scores, br_scores, clses = self.corner_head.get_prediction(
                body_feats[-1])
            bboxes = rescale_bboxes(bboxes, ratios, borders)
            detections = fluid.layers.concat([clses, scores, bboxes], axis=2)

            detections = detections[0]
            return {'bbox': detections}

    def _inputs_def(self, image_shape, output_size, max_tag_len):
        im_shape = [None] + image_shape
        C = self.num_classes
        # yapf: disable
        inputs_def = {
            'image':        {'shape': im_shape,  'dtype': 'float32', 'lod_level': 0},
            'im_id':        {'shape': [None, 1], 'dtype': 'int64',   'lod_level': 0},
            'gt_bbox':       {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
            'gt_class':     {'shape': [None, 1], 'dtype': 'int32',   'lod_level': 1},
            'ratios':       {'shape': [None, 2],  'dtype': 'float32', 'lod_level': 0},
            'borders':      {'shape': [None, 4],  'dtype': 'float32', 'lod_level': 0},
            'tl_heatmaps':  {'shape': [None, C, output_size, output_size],  'dtype': 'float32', 'lod_level': 0},
            'br_heatmaps':  {'shape': [None, C, output_size, output_size],  'dtype': 'float32', 'lod_level': 0},
            'tl_regrs':     {'shape': [None, max_tag_len, 2], 'dtype': 'float32', 'lod_level': 0},
            'br_regrs':     {'shape': [None, max_tag_len, 2], 'dtype': 'float32', 'lod_level': 0},
            'tl_tags':      {'shape': [None, max_tag_len], 'dtype': 'int64', 'lod_level': 0},
            'br_tags':      {'shape': [None, max_tag_len], 'dtype': 'int64', 'lod_level': 0},
            'tag_masks':     {'shape': [None, max_tag_len], 'dtype': 'int32', 'lod_level': 0},
        }
        # yapf: enable
        return inputs_def

    def build_inputs(
            self,
            image_shape=[3, None, None],
            fields=[
                'image', 'im_id', 'gt_box', 'gt_class', 'tl_heatmaps',
                'br_heatmaps', 'tl_regrs', 'br_regrs', 'tl_tags', 'br_tags',
                'tag_masks'
            ],  # for train
            output_size=64,
            max_tag_len=128,
            use_dataloader=True,
            iterable=False):
        inputs_def = self._inputs_def(image_shape, output_size, max_tag_len)
        feed_vars = OrderedDict([(key, fluid.data(
            name=key,
            shape=inputs_def[key]['shape'],
            dtype=inputs_def[key]['dtype'],
            lod_level=inputs_def[key]['lod_level'])) for key in fields])
        loader = fluid.io.DataLoader.from_generator(
            feed_list=list(feed_vars.values()),
            capacity=64,
            use_double_buffer=True,
            iterable=iterable) if use_dataloader else None
        return feed_vars, loader

    def train(self, feed_vars):
        return self.build(feed_vars, mode='train')

    def eval(self, feed_vars):
        return self.build(feed_vars, mode='test')

    def test(self, feed_vars):
        return self.build(feed_vars, mode='test')