layers.py 41.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16
import six
Q
qingqing01 已提交
17 18 19 20
import numpy as np
from numbers import Integral

import paddle
G
Guanghua Yu 已提交
21 22
import paddle.nn as nn
from paddle import ParamAttr
Q
qingqing01 已提交
23
from paddle import to_tensor
G
Guanghua Yu 已提交
24 25 26 27 28
from paddle.nn import Conv2D, BatchNorm2D, GroupNorm
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant
from paddle.regularizer import L2Decay

Q
qingqing01 已提交
29 30 31 32
from ppdet.core.workspace import register, serializable
from ppdet.py_op.target import generate_rpn_anchor_target, generate_proposal_target, generate_mask_target
from ppdet.py_op.post_process import bbox_post_process
from . import ops
F
Feng Ni 已提交
33
from paddle.vision.ops import DeformConv2D
Q
qingqing01 已提交
34 35 36 37 38 39 40 41


def _to_list(l):
    if isinstance(l, (list, tuple)):
        return list(l)
    return [l]


F
Feng Ni 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
class DeformableConvV2(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 lr_scale=1,
                 regularizer=None,
                 name=None):
        super(DeformableConvV2, self).__init__()
        self.offset_channel = 2 * kernel_size**2
        self.mask_channel = kernel_size**2

        if lr_scale == 1 and regularizer is None:
            offset_bias_attr = ParamAttr(
                initializer=Constant(0.),
                name='{}._conv_offset.bias'.format(name))
        else:
            offset_bias_attr = ParamAttr(
                initializer=Constant(0.),
                learning_rate=lr_scale,
                regularizer=regularizer,
                name='{}._conv_offset.bias'.format(name))
        self.conv_offset = nn.Conv2D(
            in_channels,
            3 * kernel_size**2,
            kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2,
            weight_attr=ParamAttr(
                initializer=Constant(0.0),
                name='{}._conv_offset.weight'.format(name)),
            bias_attr=offset_bias_attr)

        if bias_attr:
            # in FCOS-DCN head, specifically need learning_rate and regularizer
            dcn_bias_attr = ParamAttr(
                name=name + "_bias",
                initializer=Constant(value=0),
                regularizer=L2Decay(0.),
                learning_rate=2.)
        else:
            # in ResNet backbone, do not need bias
            dcn_bias_attr = False
        self.conv_dcn = DeformConv2D(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2 * dilation,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=dcn_bias_attr)

    def forward(self, x):
        offset_mask = self.conv_offset(x)
        offset, mask = paddle.split(
            offset_mask,
            num_or_sections=[self.offset_channel, self.mask_channel],
            axis=1)
        mask = F.sigmoid(mask)
        y = self.conv_dcn(x, offset, mask=mask)
        return y


G
Guanghua Yu 已提交
113 114 115 116 117 118 119 120 121 122
class ConvNormLayer(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size,
                 stride,
                 norm_type='bn',
                 norm_groups=32,
                 use_dcn=False,
                 norm_name=None,
F
Feng Ni 已提交
123 124
                 bias_on=False,
                 lr_scale=1.,
G
Guanghua Yu 已提交
125 126 127 128
                 name=None):
        super(ConvNormLayer, self).__init__()
        assert norm_type in ['bn', 'sync_bn', 'gn']

F
Feng Ni 已提交
129 130 131 132 133 134 135 136
        if bias_on:
            bias_attr = ParamAttr(
                name=name + "_bias",
                initializer=Constant(value=0.),
                learning_rate=lr_scale)
        else:
            bias_attr = False

F
Feng Ni 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        if not use_dcn:
            self.conv = nn.Conv2D(
                in_channels=ch_in,
                out_channels=ch_out,
                kernel_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=1,
                weight_attr=ParamAttr(
                    name=name + "_weight",
                    initializer=Normal(
                        mean=0., std=0.01),
                    learning_rate=1.),
                bias_attr=bias_attr)
        else:
            # in FCOS-DCN head, specifically need learning_rate and regularizer
            self.conv = DeformableConvV2(
                in_channels=ch_in,
                out_channels=ch_out,
                kernel_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=1,
                weight_attr=ParamAttr(
                    name=name + "_weight",
                    initializer=Normal(
                        mean=0., std=0.01),
                    learning_rate=1.),
                bias_attr=True,
                lr_scale=2.,
                regularizer=L2Decay(0.),
                name=name)
G
Guanghua Yu 已提交
169 170 171 172 173 174 175 176 177 178

        param_attr = ParamAttr(
            name=norm_name + "_scale",
            learning_rate=1.,
            regularizer=L2Decay(0.))
        bias_attr = ParamAttr(
            name=norm_name + "_offset",
            learning_rate=1.,
            regularizer=L2Decay(0.))
        if norm_type in ['bn', 'sync_bn']:
F
Feng Ni 已提交
179
            self.norm = nn.BatchNorm2D(
G
Guanghua Yu 已提交
180 181
                ch_out, weight_attr=param_attr, bias_attr=bias_attr)
        elif norm_type == 'gn':
F
Feng Ni 已提交
182
            self.norm = nn.GroupNorm(
G
Guanghua Yu 已提交
183 184 185 186 187 188 189 190 191 192 193
                num_groups=norm_groups,
                num_channels=ch_out,
                weight_attr=param_attr,
                bias_attr=bias_attr)

    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.norm(out)
        return out


Q
qingqing01 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
@register
@serializable
class AnchorGeneratorRPN(object):
    def __init__(self,
                 anchor_sizes=[32, 64, 128, 256, 512],
                 aspect_ratios=[0.5, 1.0, 2.0],
                 stride=[16.0, 16.0],
                 variance=[1.0, 1.0, 1.0, 1.0],
                 anchor_start_size=None):
        super(AnchorGeneratorRPN, self).__init__()
        self.anchor_sizes = anchor_sizes
        self.aspect_ratios = aspect_ratios
        self.stride = stride
        self.variance = variance
        self.anchor_start_size = anchor_start_size

    def __call__(self, input, level=None):
        anchor_sizes = self.anchor_sizes if (
            level is None or self.anchor_start_size is None) else (
                self.anchor_start_size * 2**level)
        stride = self.stride if (
            level is None or self.anchor_start_size is None) else (
                self.stride[0] * (2.**level), self.stride[1] * (2.**level))
        anchor, var = ops.anchor_generator(
            input=input,
            anchor_sizes=anchor_sizes,
            aspect_ratios=self.aspect_ratios,
            stride=stride,
            variance=self.variance)
        return anchor, var


@register
@serializable
class AnchorTargetGeneratorRPN(object):
    def __init__(self,
                 batch_size_per_im=256,
                 straddle_thresh=0.,
                 fg_fraction=0.5,
                 positive_overlap=0.7,
                 negative_overlap=0.3,
                 use_random=True):
        super(AnchorTargetGeneratorRPN, self).__init__()
        self.batch_size_per_im = batch_size_per_im
        self.straddle_thresh = straddle_thresh
        self.fg_fraction = fg_fraction
        self.positive_overlap = positive_overlap
        self.negative_overlap = negative_overlap
        self.use_random = use_random

    def __call__(self, cls_logits, bbox_pred, anchor_box, gt_boxes, is_crowd,
                 im_info):
        anchor_box = anchor_box.numpy()
        gt_boxes = gt_boxes.numpy()
        is_crowd = is_crowd.numpy()
        im_info = im_info.numpy()
        loc_indexes, score_indexes, tgt_labels, tgt_bboxes, bbox_inside_weights = generate_rpn_anchor_target(
            anchor_box, gt_boxes, is_crowd, im_info, self.straddle_thresh,
            self.batch_size_per_im, self.positive_overlap,
            self.negative_overlap, self.fg_fraction, self.use_random)

        loc_indexes = to_tensor(loc_indexes)
        score_indexes = to_tensor(score_indexes)
        tgt_labels = to_tensor(tgt_labels)
        tgt_bboxes = to_tensor(tgt_bboxes)
        bbox_inside_weights = to_tensor(bbox_inside_weights)

        loc_indexes.stop_gradient = True
        score_indexes.stop_gradient = True
        tgt_labels.stop_gradient = True

        cls_logits = paddle.reshape(x=cls_logits, shape=(-1, ))
        bbox_pred = paddle.reshape(x=bbox_pred, shape=(-1, 4))
        pred_cls_logits = paddle.gather(cls_logits, score_indexes)
        pred_bbox_pred = paddle.gather(bbox_pred, loc_indexes)

        return pred_cls_logits, pred_bbox_pred, tgt_labels, tgt_bboxes, bbox_inside_weights


@register
@serializable
class AnchorGeneratorSSD(object):
    def __init__(self,
                 steps=[8, 16, 32, 64, 100, 300],
                 aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
                 min_ratio=15,
                 max_ratio=90,
281
                 base_size=300,
Q
qingqing01 已提交
282 283 284 285 286 287 288 289 290 291
                 min_sizes=[30.0, 60.0, 111.0, 162.0, 213.0, 264.0],
                 max_sizes=[60.0, 111.0, 162.0, 213.0, 264.0, 315.0],
                 offset=0.5,
                 flip=True,
                 clip=False,
                 min_max_aspect_ratios_order=False):
        self.steps = steps
        self.aspect_ratios = aspect_ratios
        self.min_ratio = min_ratio
        self.max_ratio = max_ratio
292
        self.base_size = base_size
Q
qingqing01 已提交
293 294 295 296 297 298 299
        self.min_sizes = min_sizes
        self.max_sizes = max_sizes
        self.offset = offset
        self.flip = flip
        self.clip = clip
        self.min_max_aspect_ratios_order = min_max_aspect_ratios_order

300 301 302 303 304 305 306 307 308 309 310 311
        if self.min_sizes == [] and self.max_sizes == []:
            num_layer = len(aspect_ratios)
            step = int(
                math.floor(((self.max_ratio - self.min_ratio)) / (num_layer - 2
                                                                  )))
            for ratio in six.moves.range(self.min_ratio, self.max_ratio + 1,
                                         step):
                self.min_sizes.append(self.base_size * ratio / 100.)
                self.max_sizes.append(self.base_size * (ratio + step) / 100.)
            self.min_sizes = [self.base_size * .10] + self.min_sizes
            self.max_sizes = [self.base_size * .20] + self.max_sizes

Q
qingqing01 已提交
312
        self.num_priors = []
313 314
        for aspect_ratio, min_size, max_size in zip(
                aspect_ratios, self.min_sizes, self.max_sizes):
Q
qingqing01 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
            self.num_priors.append((len(aspect_ratio) * 2 + 1) * len(
                _to_list(min_size)) + len(_to_list(max_size)))

    def __call__(self, inputs, image):
        boxes = []
        for input, min_size, max_size, aspect_ratio, step in zip(
                inputs, self.min_sizes, self.max_sizes, self.aspect_ratios,
                self.steps):
            box, _ = ops.prior_box(
                input=input,
                image=image,
                min_sizes=_to_list(min_size),
                max_sizes=_to_list(max_size),
                aspect_ratios=aspect_ratio,
                flip=self.flip,
                clip=self.clip,
                steps=[step, step],
                offset=self.offset,
                min_max_aspect_ratios_order=self.min_max_aspect_ratios_order)
            boxes.append(paddle.reshape(box, [-1, 4]))
        return boxes


@register
@serializable
class ProposalGenerator(object):
    __append_doc__ = True

    def __init__(self,
                 train_pre_nms_top_n=12000,
                 train_post_nms_top_n=2000,
                 infer_pre_nms_top_n=6000,
                 infer_post_nms_top_n=1000,
                 nms_thresh=.5,
                 min_size=.1,
                 eta=1.):
        super(ProposalGenerator, self).__init__()
        self.train_pre_nms_top_n = train_pre_nms_top_n
        self.train_post_nms_top_n = train_post_nms_top_n
        self.infer_pre_nms_top_n = infer_pre_nms_top_n
        self.infer_post_nms_top_n = infer_post_nms_top_n
        self.nms_thresh = nms_thresh
        self.min_size = min_size
        self.eta = eta

    def __call__(self,
                 scores,
                 bbox_deltas,
                 anchors,
                 variances,
                 im_shape,
366 367 368
                 is_train=False):
        pre_nms_top_n = self.train_pre_nms_top_n if is_train else self.infer_pre_nms_top_n
        post_nms_top_n = self.train_post_nms_top_n if is_train else self.infer_post_nms_top_n
Q
qingqing01 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
        # TODO delete im_info
        if im_shape.shape[1] > 2:
            import paddle.fluid as fluid
            rpn_rois, rpn_rois_prob, rpn_rois_num = fluid.layers.generate_proposals(
                scores,
                bbox_deltas,
                im_shape,
                anchors,
                variances,
                pre_nms_top_n=pre_nms_top_n,
                post_nms_top_n=post_nms_top_n,
                nms_thresh=self.nms_thresh,
                min_size=self.min_size,
                eta=self.eta,
                return_rois_num=True)
        else:
            rpn_rois, rpn_rois_prob, rpn_rois_num = ops.generate_proposals(
                scores,
                bbox_deltas,
                im_shape,
                anchors,
                variances,
                pre_nms_top_n=pre_nms_top_n,
                post_nms_top_n=post_nms_top_n,
                nms_thresh=self.nms_thresh,
                min_size=self.min_size,
                eta=self.eta,
                return_rois_num=True)
        return rpn_rois, rpn_rois_prob, rpn_rois_num, post_nms_top_n


@register
@serializable
class ProposalTargetGenerator(object):
    __shared__ = ['num_classes']

    def __init__(self,
                 batch_size_per_im=512,
                 fg_fraction=.25,
                 fg_thresh=[.5, ],
                 bg_thresh_hi=[.5, ],
                 bg_thresh_lo=[0., ],
                 bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                 num_classes=81,
                 use_random=True,
                 is_cls_agnostic=False):
        super(ProposalTargetGenerator, self).__init__()
        self.batch_size_per_im = batch_size_per_im
        self.fg_fraction = fg_fraction
        self.fg_thresh = fg_thresh
        self.bg_thresh_hi = bg_thresh_hi
        self.bg_thresh_lo = bg_thresh_lo
        self.bbox_reg_weights = bbox_reg_weights
        self.num_classes = num_classes
        self.use_random = use_random
        self.is_cls_agnostic = is_cls_agnostic

    def __call__(self,
                 rpn_rois,
                 rpn_rois_num,
                 gt_classes,
                 is_crowd,
                 gt_boxes,
                 im_info,
                 stage=0,
                 max_overlap=None):
        rpn_rois = rpn_rois.numpy()
        rpn_rois_num = rpn_rois_num.numpy()
        gt_classes = gt_classes.numpy()
        gt_boxes = gt_boxes.numpy()
        is_crowd = is_crowd.numpy()
        im_info = im_info.numpy()
        max_overlap = max_overlap if max_overlap is None else max_overlap.numpy(
        )
        reg_weights = [i / (stage + 1) for i in self.bbox_reg_weights]
        is_cascade = True if stage > 0 else False
        num_classes = 2 if is_cascade else self.num_classes
        outs = generate_proposal_target(
            rpn_rois, rpn_rois_num, gt_classes, is_crowd, gt_boxes, im_info,
            self.batch_size_per_im, self.fg_fraction, self.fg_thresh[stage],
            self.bg_thresh_hi[stage], self.bg_thresh_lo[stage], reg_weights,
            num_classes, self.use_random, self.is_cls_agnostic, is_cascade,
            max_overlap)
        outs = [to_tensor(v) for v in outs]
        for v in outs:
            v.stop_gradient = True
        return outs


@register
@serializable
class MaskTargetGenerator(object):
    __shared__ = ['num_classes', 'mask_resolution']

    def __init__(self, num_classes=81, mask_resolution=14):
        super(MaskTargetGenerator, self).__init__()
        self.num_classes = num_classes
        self.mask_resolution = mask_resolution

    def __call__(self, im_info, gt_classes, is_crowd, gt_segms, rois, rois_num,
                 labels_int32):
        im_info = im_info.numpy()
        gt_classes = gt_classes.numpy()
        is_crowd = is_crowd.numpy()
        gt_segms = gt_segms.numpy()
        rois = rois.numpy()
        rois_num = rois_num.numpy()
        labels_int32 = labels_int32.numpy()
        outs = generate_mask_target(im_info, gt_classes, is_crowd, gt_segms,
                                    rois, rois_num, labels_int32,
                                    self.num_classes, self.mask_resolution)

        outs = [to_tensor(v) for v in outs]
        for v in outs:
            v.stop_gradient = True
        return outs


@register
@serializable
class RCNNBox(object):
    __shared__ = ['num_classes', 'batch_size']

    def __init__(self,
                 num_classes=81,
                 batch_size=1,
                 prior_box_var=[0.1, 0.1, 0.2, 0.2],
                 code_type="decode_center_size",
                 box_normalized=False,
                 axis=1,
                 var_weight=1.):
        super(RCNNBox, self).__init__()
        self.num_classes = num_classes
        self.batch_size = batch_size
        self.prior_box_var = prior_box_var
        self.code_type = code_type
        self.box_normalized = box_normalized
        self.axis = axis
        self.var_weight = var_weight

    def __call__(self, bbox_head_out, rois, im_shape, scale_factor):
        bbox_pred, cls_prob = bbox_head_out
        roi, rois_num = rois
        origin_shape = im_shape / scale_factor
        scale_list = []
        origin_shape_list = []
        for idx in range(self.batch_size):
            scale = scale_factor[idx, :][0]
            rois_num_per_im = rois_num[idx]
            expand_scale = paddle.expand(scale, [rois_num_per_im, 1])
            scale_list.append(expand_scale)
            expand_im_shape = paddle.expand(origin_shape[idx, :],
                                            [rois_num_per_im, 2])
            origin_shape_list.append(expand_im_shape)

        scale = paddle.concat(scale_list)
        origin_shape = paddle.concat(origin_shape_list)

        bbox = roi / scale
        prior_box_var = [i / self.var_weight for i in self.prior_box_var]
        bbox = ops.box_coder(
            prior_box=bbox,
            prior_box_var=prior_box_var,
            target_box=bbox_pred,
            code_type=self.code_type,
            box_normalized=self.box_normalized,
            axis=self.axis)
        # TODO: Updata box_clip
        origin_h = paddle.unsqueeze(origin_shape[:, 0] - 1, axis=1)
        origin_w = paddle.unsqueeze(origin_shape[:, 1] - 1, axis=1)
539
        zeros = paddle.zeros(paddle.shape(origin_h), 'float32')
Q
qingqing01 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
        x1 = paddle.maximum(paddle.minimum(bbox[:, :, 0], origin_w), zeros)
        y1 = paddle.maximum(paddle.minimum(bbox[:, :, 1], origin_h), zeros)
        x2 = paddle.maximum(paddle.minimum(bbox[:, :, 2], origin_w), zeros)
        y2 = paddle.maximum(paddle.minimum(bbox[:, :, 3], origin_h), zeros)
        bbox = paddle.stack([x1, y1, x2, y2], axis=-1)

        bboxes = (bbox, rois_num)
        return bboxes, cls_prob


@register
@serializable
class DecodeClipNms(object):
    __shared__ = ['num_classes']

    def __init__(
            self,
            num_classes=81,
            keep_top_k=100,
            score_threshold=0.05,
            nms_threshold=0.5, ):
        super(DecodeClipNms, self).__init__()
        self.num_classes = num_classes
        self.keep_top_k = keep_top_k
        self.score_threshold = score_threshold
        self.nms_threshold = nms_threshold

    def __call__(self, bboxes, bbox_prob, bbox_delta, im_info):
        bboxes_np = (i.numpy() for i in bboxes)
        # bbox, bbox_num
        outs = bbox_post_process(bboxes_np,
                                 bbox_prob.numpy(),
                                 bbox_delta.numpy(),
                                 im_info.numpy(), self.keep_top_k,
                                 self.score_threshold, self.nms_threshold,
                                 self.num_classes)
        outs = [to_tensor(v) for v in outs]
        for v in outs:
            v.stop_gradient = True
        return outs


@register
@serializable
class MultiClassNMS(object):
    def __init__(self,
                 score_threshold=.05,
                 nms_top_k=-1,
                 keep_top_k=100,
                 nms_threshold=.5,
                 normalized=False,
                 nms_eta=1.0,
                 background_label=0,
                 return_rois_num=True):
        super(MultiClassNMS, self).__init__()
        self.score_threshold = score_threshold
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.nms_threshold = nms_threshold
        self.normalized = normalized
        self.nms_eta = nms_eta
        self.background_label = background_label
        self.return_rois_num = return_rois_num

    def __call__(self, bboxes, score):
        kwargs = self.__dict__.copy()
        if isinstance(bboxes, tuple):
            bboxes, bbox_num = bboxes
            kwargs.update({'rois_num': bbox_num})
        return ops.multiclass_nms(bboxes, score, **kwargs)


@register
@serializable
class MatrixNMS(object):
    __append_doc__ = True

    def __init__(self,
                 score_threshold=.05,
                 post_threshold=.05,
                 nms_top_k=-1,
                 keep_top_k=100,
                 use_gaussian=False,
                 gaussian_sigma=2.,
                 normalized=False,
                 background_label=0):
        super(MatrixNMS, self).__init__()
        self.score_threshold = score_threshold
        self.post_threshold = post_threshold
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.normalized = normalized
        self.use_gaussian = use_gaussian
        self.gaussian_sigma = gaussian_sigma
        self.background_label = background_label

W
wangxinxin08 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648
    def __call__(self, bbox, score):
        return ops.matrix_nms(
            bboxes=bbox,
            scores=score,
            score_threshold=self.score_threshold,
            post_threshold=self.post_threshold,
            nms_top_k=self.nms_top_k,
            keep_top_k=self.keep_top_k,
            use_gaussian=self.use_gaussian,
            gaussian_sigma=self.gaussian_sigma,
            background_label=self.background_label,
            normalized=self.normalized)

Q
qingqing01 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

@register
@serializable
class YOLOBox(object):
    __shared__ = ['num_classes']

    def __init__(self,
                 num_classes=80,
                 conf_thresh=0.005,
                 downsample_ratio=32,
                 clip_bbox=True,
                 scale_x_y=1.):
        self.num_classes = num_classes
        self.conf_thresh = conf_thresh
        self.downsample_ratio = downsample_ratio
        self.clip_bbox = clip_bbox
        self.scale_x_y = scale_x_y

    def __call__(self,
                 yolo_head_out,
                 anchors,
                 im_shape,
                 scale_factor,
                 var_weight=None):
        boxes_list = []
        scores_list = []
        origin_shape = im_shape / scale_factor
        origin_shape = paddle.cast(origin_shape, 'int32')
        for i, head_out in enumerate(yolo_head_out):
            boxes, scores = ops.yolo_box(head_out, origin_shape, anchors[i],
                                         self.num_classes, self.conf_thresh,
                                         self.downsample_ratio // 2**i,
                                         self.clip_bbox, self.scale_x_y)
            boxes_list.append(boxes)
            scores_list.append(paddle.transpose(scores, perm=[0, 2, 1]))
        yolo_boxes = paddle.concat(boxes_list, axis=1)
        yolo_scores = paddle.concat(scores_list, axis=2)
        return yolo_boxes, yolo_scores


@register
@serializable
class SSDBox(object):
    def __init__(self, is_normalized=True):
        self.is_normalized = is_normalized
        self.norm_delta = float(not self.is_normalized)

    def __call__(self,
                 preds,
                 prior_boxes,
                 im_shape,
                 scale_factor,
                 var_weight=None):
        boxes, scores = preds['boxes'], preds['scores']
        outputs = []
        for box, score, prior_box in zip(boxes, scores, prior_boxes):
            pb_w = prior_box[:, 2] - prior_box[:, 0] + self.norm_delta
            pb_h = prior_box[:, 3] - prior_box[:, 1] + self.norm_delta
            pb_x = prior_box[:, 0] + pb_w * 0.5
            pb_y = prior_box[:, 1] + pb_h * 0.5
            out_x = pb_x + box[:, :, 0] * pb_w * 0.1
            out_y = pb_y + box[:, :, 1] * pb_h * 0.1
            out_w = paddle.exp(box[:, :, 2] * 0.2) * pb_w
            out_h = paddle.exp(box[:, :, 3] * 0.2) * pb_h

            if self.is_normalized:
K
Kaipeng Deng 已提交
715 716 717 718
                h = paddle.unsqueeze(
                    im_shape[:, 0] / scale_factor[:, 0], axis=-1)
                w = paddle.unsqueeze(
                    im_shape[:, 1] / scale_factor[:, 1], axis=-1)
Q
qingqing01 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
                output = paddle.stack(
                    [(out_x - out_w / 2.) * w, (out_y - out_h / 2.) * h,
                     (out_x + out_w / 2.) * w, (out_y + out_h / 2.) * h],
                    axis=-1)
            else:
                output = paddle.stack(
                    [
                        out_x - out_w / 2., out_y - out_h / 2.,
                        out_x + out_w / 2. - 1., out_y + out_h / 2. - 1.
                    ],
                    axis=-1)
            outputs.append(output)
        boxes = paddle.concat(outputs, axis=1)

        scores = F.softmax(paddle.concat(scores, axis=1))
        scores = paddle.transpose(scores, [0, 2, 1])

        return boxes, scores


@register
@serializable
class AnchorGrid(object):
    """Generate anchor grid

    Args:
        image_size (int or list): input image size, may be a single integer or
            list of [h, w]. Default: 512
        min_level (int): min level of the feature pyramid. Default: 3
        max_level (int): max level of the feature pyramid. Default: 7
        anchor_base_scale: base anchor scale. Default: 4
        num_scales: number of anchor scales. Default: 3
        aspect_ratios: aspect ratios. default: [[1, 1], [1.4, 0.7], [0.7, 1.4]]
    """

    def __init__(self,
                 image_size=512,
                 min_level=3,
                 max_level=7,
                 anchor_base_scale=4,
                 num_scales=3,
                 aspect_ratios=[[1, 1], [1.4, 0.7], [0.7, 1.4]]):
        super(AnchorGrid, self).__init__()
        if isinstance(image_size, Integral):
            self.image_size = [image_size, image_size]
        else:
            self.image_size = image_size
        for dim in self.image_size:
            assert dim % 2 ** max_level == 0, \
                "image size should be multiple of the max level stride"
        self.min_level = min_level
        self.max_level = max_level
        self.anchor_base_scale = anchor_base_scale
        self.num_scales = num_scales
        self.aspect_ratios = aspect_ratios

    @property
    def base_cell(self):
        if not hasattr(self, '_base_cell'):
            self._base_cell = self.make_cell()
        return self._base_cell

    def make_cell(self):
        scales = [2**(i / self.num_scales) for i in range(self.num_scales)]
        scales = np.array(scales)
        ratios = np.array(self.aspect_ratios)
        ws = np.outer(scales, ratios[:, 0]).reshape(-1, 1)
        hs = np.outer(scales, ratios[:, 1]).reshape(-1, 1)
        anchors = np.hstack((-0.5 * ws, -0.5 * hs, 0.5 * ws, 0.5 * hs))
        return anchors

    def make_grid(self, stride):
        cell = self.base_cell * stride * self.anchor_base_scale
        x_steps = np.arange(stride // 2, self.image_size[1], stride)
        y_steps = np.arange(stride // 2, self.image_size[0], stride)
        offset_x, offset_y = np.meshgrid(x_steps, y_steps)
        offset_x = offset_x.flatten()
        offset_y = offset_y.flatten()
        offsets = np.stack((offset_x, offset_y, offset_x, offset_y), axis=-1)
        offsets = offsets[:, np.newaxis, :]
        return (cell + offsets).reshape(-1, 4)

    def generate(self):
        return [
            self.make_grid(2**l)
            for l in range(self.min_level, self.max_level + 1)
        ]

    def __call__(self):
        if not hasattr(self, '_anchor_vars'):
            anchor_vars = []
            helper = LayerHelper('anchor_grid')
            for idx, l in enumerate(range(self.min_level, self.max_level + 1)):
                stride = 2**l
                anchors = self.make_grid(stride)
                var = helper.create_parameter(
                    attr=ParamAttr(name='anchors_{}'.format(idx)),
                    shape=anchors.shape,
                    dtype='float32',
                    stop_gradient=True,
                    default_initializer=NumpyArrayInitializer(anchors))
                anchor_vars.append(var)
                var.persistable = True
            self._anchor_vars = anchor_vars

        return self._anchor_vars
G
Guanghua Yu 已提交
825 826 827 828


@register
@serializable
F
Feng Ni 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
class FCOSBox(object):
    __shared__ = ['num_classes', 'batch_size']

    def __init__(self, num_classes=80, batch_size=1):
        super(FCOSBox, self).__init__()
        self.num_classes = num_classes
        self.batch_size = batch_size

    def _merge_hw(self, inputs, ch_type="channel_first"):
        """
        Args:
            inputs (Variables): Feature map whose H and W will be merged into one dimension
            ch_type     (str): channel_first / channel_last
        Return:
            new_shape (Variables): The new shape after h and w merged into one dimension
        """
        shape_ = paddle.shape(inputs)
        bs, ch, hi, wi = shape_[0], shape_[1], shape_[2], shape_[3]
        img_size = hi * wi
        img_size.stop_gradient = True
        if ch_type == "channel_first":
            new_shape = paddle.concat([bs, ch, img_size])
        elif ch_type == "channel_last":
            new_shape = paddle.concat([bs, img_size, ch])
        else:
            raise KeyError("Wrong ch_type %s" % ch_type)
        new_shape.stop_gradient = True
        return new_shape

    def _postprocessing_by_level(self, locations, box_cls, box_reg, box_ctn,
                                 scale_factor):
        """
        Args:
            locations (Variables): anchor points for current layer, [H*W, 2]
            box_cls   (Variables): categories prediction, [N, C, H, W],  C is the number of classes 
            box_reg   (Variables): bounding box prediction, [N, 4, H, W]
            box_ctn   (Variables): centerness prediction, [N, 1, H, W]
            scale_factor   (Variables): [h_scale, w_scale] for input images
        Return:
            box_cls_ch_last  (Variables): score for each category, in [N, C, M]
                C is the number of classes and M is the number of anchor points
            box_reg_decoding (Variables): decoded bounding box, in [N, M, 4]
                last dimension is [x1, y1, x2, y2]
        """
        act_shape_cls = self._merge_hw(box_cls)
        box_cls_ch_last = paddle.reshape(x=box_cls, shape=act_shape_cls)
        box_cls_ch_last = F.sigmoid(box_cls_ch_last)

        act_shape_reg = self._merge_hw(box_reg)
        box_reg_ch_last = paddle.reshape(x=box_reg, shape=act_shape_reg)
        box_reg_ch_last = paddle.transpose(box_reg_ch_last, perm=[0, 2, 1])
        box_reg_decoding = paddle.stack(
            [
                locations[:, 0] - box_reg_ch_last[:, :, 0],
                locations[:, 1] - box_reg_ch_last[:, :, 1],
                locations[:, 0] + box_reg_ch_last[:, :, 2],
                locations[:, 1] + box_reg_ch_last[:, :, 3]
            ],
            axis=1)
        box_reg_decoding = paddle.transpose(box_reg_decoding, perm=[0, 2, 1])

        act_shape_ctn = self._merge_hw(box_ctn)
        box_ctn_ch_last = paddle.reshape(x=box_ctn, shape=act_shape_ctn)
        box_ctn_ch_last = F.sigmoid(box_ctn_ch_last)

        # recover the location to original image
        im_scale = paddle.concat([scale_factor, scale_factor], axis=1)
        box_reg_decoding = box_reg_decoding / im_scale
        box_cls_ch_last = box_cls_ch_last * box_ctn_ch_last
        return box_cls_ch_last, box_reg_decoding

    def __call__(self, locations, cls_logits, bboxes_reg, centerness,
                 scale_factor):
        pred_boxes_ = []
        pred_scores_ = []
        for pts, cls, box, ctn in zip(locations, cls_logits, bboxes_reg,
                                      centerness):
            pred_scores_lvl, pred_boxes_lvl = self._postprocessing_by_level(
                pts, cls, box, ctn, scale_factor)
            pred_boxes_.append(pred_boxes_lvl)
            pred_scores_.append(pred_scores_lvl)
        pred_boxes = paddle.concat(pred_boxes_, axis=1)
        pred_scores = paddle.concat(pred_scores_, axis=2)
        return pred_boxes, pred_scores


915
@register
F
Feng Ni 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
class TTFBox(object):
    __shared__ = ['down_ratio']

    def __init__(self, max_per_img=100, score_thresh=0.01, down_ratio=4):
        super(TTFBox, self).__init__()
        self.max_per_img = max_per_img
        self.score_thresh = score_thresh
        self.down_ratio = down_ratio

    def _simple_nms(self, heat, kernel=3):
        pad = (kernel - 1) // 2
        hmax = F.max_pool2d(heat, kernel, stride=1, padding=pad)
        keep = paddle.cast(hmax == heat, 'float32')
        return heat * keep

    def _topk(self, scores):
        k = self.max_per_img
        shape_fm = paddle.shape(scores)
        shape_fm.stop_gradient = True
        cat, height, width = shape_fm[1], shape_fm[2], shape_fm[3]
        # batch size is 1
        scores_r = paddle.reshape(scores, [cat, -1])
        topk_scores, topk_inds = paddle.topk(scores_r, k)
        topk_scores, topk_inds = paddle.topk(scores_r, k)
        topk_ys = topk_inds // width
        topk_xs = topk_inds % width

        topk_score_r = paddle.reshape(topk_scores, [-1])
        topk_score, topk_ind = paddle.topk(topk_score_r, k)
        k_t = paddle.full(paddle.shape(topk_ind), k, dtype='int64')
        topk_clses = paddle.cast(paddle.floor_divide(topk_ind, k_t), 'float32')

        topk_inds = paddle.reshape(topk_inds, [-1])
        topk_ys = paddle.reshape(topk_ys, [-1, 1])
        topk_xs = paddle.reshape(topk_xs, [-1, 1])
        topk_inds = paddle.gather(topk_inds, topk_ind)
        topk_ys = paddle.gather(topk_ys, topk_ind)
        topk_xs = paddle.gather(topk_xs, topk_ind)

        return topk_score, topk_inds, topk_clses, topk_ys, topk_xs

    def __call__(self, hm, wh, im_shape, scale_factor):
        heatmap = F.sigmoid(hm)
        heat = self._simple_nms(heatmap)
        scores, inds, clses, ys, xs = self._topk(heat)
        ys = paddle.cast(ys, 'float32') * self.down_ratio
        xs = paddle.cast(xs, 'float32') * self.down_ratio
        scores = paddle.tensor.unsqueeze(scores, [1])
        clses = paddle.tensor.unsqueeze(clses, [1])

        wh_t = paddle.transpose(wh, [0, 2, 3, 1])
        wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]])
        wh = paddle.gather(wh, inds)

        x1 = xs - wh[:, 0:1]
        y1 = ys - wh[:, 1:2]
        x2 = xs + wh[:, 2:3]
        y2 = ys + wh[:, 3:4]

        bboxes = paddle.concat([x1, y1, x2, y2], axis=1)

        scale_y = scale_factor[:, 0:1]
        scale_x = scale_factor[:, 1:2]
        scale_expand = paddle.concat(
            [scale_x, scale_y, scale_x, scale_y], axis=1)
        boxes_shape = paddle.shape(bboxes)
        boxes_shape.stop_gradient = True
        scale_expand = paddle.expand(scale_expand, shape=boxes_shape)
        bboxes = paddle.divide(bboxes, scale_expand)
        results = paddle.concat([clses, scores, bboxes], axis=1)
        # hack: append result with cls=-1 and score=1. to avoid all scores
        # are less than score_thresh which may cause error in gather.
        fill_r = paddle.to_tensor(np.array([[-1, 1, 0, 0, 0, 0]]))
        fill_r = paddle.cast(fill_r, results.dtype)
        results = paddle.concat([results, fill_r])
        scores = results[:, 1]
        valid_ind = paddle.nonzero(scores > self.score_thresh)
        results = paddle.gather(results, valid_ind)
        return results, paddle.shape(results)[0:1]


G
Guanghua Yu 已提交
997
@register
998
@serializable
G
Guanghua Yu 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
class MaskMatrixNMS(object):
    """
    Matrix NMS for multi-class masks.
    Args:
        update_threshold (float): Updated threshold of categroy score in second time.
        pre_nms_top_n (int): Number of total instance to be kept per image before NMS
        post_nms_top_n (int): Number of total instance to be kept per image after NMS.
        kernel (str):  'linear' or 'gaussian'.
        sigma (float): std in gaussian method.
    Input:
        seg_preds (Variable): shape (n, h, w), segmentation feature maps
        seg_masks (Variable): shape (n, h, w), segmentation feature maps
        cate_labels (Variable): shape (n), mask labels in descending order
        cate_scores (Variable): shape (n), mask scores in descending order
        sum_masks (Variable): a float tensor of the sum of seg_masks
    Returns:
        Variable: cate_scores, tensors of shape (n)
    """

    def __init__(self,
                 update_threshold=0.05,
                 pre_nms_top_n=500,
                 post_nms_top_n=100,
                 kernel='gaussian',
                 sigma=2.0):
        super(MaskMatrixNMS, self).__init__()
        self.update_threshold = update_threshold
        self.pre_nms_top_n = pre_nms_top_n
        self.post_nms_top_n = post_nms_top_n
        self.kernel = kernel
        self.sigma = sigma

    def _sort_score(self, scores, top_num):
        if paddle.shape(scores)[0] > top_num:
            return paddle.topk(scores, top_num)[1]
        else:
            return paddle.argsort(scores, descending=True)

    def __call__(self,
                 seg_preds,
                 seg_masks,
                 cate_labels,
                 cate_scores,
                 sum_masks=None):
        # sort and keep top nms_pre
        sort_inds = self._sort_score(cate_scores, self.pre_nms_top_n)
        seg_masks = paddle.gather(seg_masks, index=sort_inds)
        seg_preds = paddle.gather(seg_preds, index=sort_inds)
        sum_masks = paddle.gather(sum_masks, index=sort_inds)
        cate_scores = paddle.gather(cate_scores, index=sort_inds)
        cate_labels = paddle.gather(cate_labels, index=sort_inds)

        seg_masks = paddle.flatten(seg_masks, start_axis=1, stop_axis=-1)
        # inter.
        inter_matrix = paddle.mm(seg_masks, paddle.transpose(seg_masks, [1, 0]))
        n_samples = paddle.shape(cate_labels)
        # union.
        sum_masks_x = paddle.expand(sum_masks, shape=[n_samples, n_samples])
        # iou.
        iou_matrix = (inter_matrix / (
            sum_masks_x + paddle.transpose(sum_masks_x, [1, 0]) - inter_matrix))
        iou_matrix = paddle.triu(iou_matrix, diagonal=1)
        # label_specific matrix.
        cate_labels_x = paddle.expand(cate_labels, shape=[n_samples, n_samples])
        label_matrix = paddle.cast(
            (cate_labels_x == paddle.transpose(cate_labels_x, [1, 0])),
            'float32')
        label_matrix = paddle.triu(label_matrix, diagonal=1)

        # IoU compensation
        compensate_iou = paddle.max((iou_matrix * label_matrix), axis=0)
        compensate_iou = paddle.expand(
            compensate_iou, shape=[n_samples, n_samples])
        compensate_iou = paddle.transpose(compensate_iou, [1, 0])

        # IoU decay
        decay_iou = iou_matrix * label_matrix

        # matrix nms
        if self.kernel == 'gaussian':
            decay_matrix = paddle.exp(-1 * self.sigma * (decay_iou**2))
            compensate_matrix = paddle.exp(-1 * self.sigma *
                                           (compensate_iou**2))
            decay_coefficient = paddle.min(decay_matrix / compensate_matrix,
                                           axis=0)
        elif self.kernel == 'linear':
            decay_matrix = (1 - decay_iou) / (1 - compensate_iou)
            decay_coefficient = paddle.min(decay_matrix, axis=0)
        else:
            raise NotImplementedError

        # update the score.
        cate_scores = cate_scores * decay_coefficient
        y = paddle.zeros(shape=paddle.shape(cate_scores), dtype='float32')
        keep = paddle.where(cate_scores >= self.update_threshold, cate_scores,
                            y)
        keep = paddle.nonzero(keep)
        keep = paddle.squeeze(keep, axis=[1])
        # Prevent empty and increase fake data
        keep = paddle.concat(
            [keep, paddle.cast(paddle.shape(cate_scores)[0] - 1, 'int64')])

        seg_preds = paddle.gather(seg_preds, index=keep)
        cate_scores = paddle.gather(cate_scores, index=keep)
        cate_labels = paddle.gather(cate_labels, index=keep)

        # sort and keep top_k
        sort_inds = self._sort_score(cate_scores, self.post_nms_top_n)
        seg_preds = paddle.gather(seg_preds, index=sort_inds)
        cate_scores = paddle.gather(cate_scores, index=sort_inds)
        cate_labels = paddle.gather(cate_labels, index=sort_inds)
        return seg_preds, cate_scores, cate_labels