bbox_head.py 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Normal, Xavier
from paddle.fluid.regularizer import L2Decay
Y
Yuan Gao 已提交
25
from paddle.fluid.initializer import MSRA
26 27

from ppdet.modeling.ops import MultiClassNMS
Y
Yuan Gao 已提交
28
from ppdet.modeling.ops import ConvNorm
littletomatodonkey's avatar
littletomatodonkey 已提交
29
from ppdet.modeling.losses import SmoothL1Loss
30
from ppdet.core.workspace import register, serializable
Y
Yang Zhang 已提交
31
from ppdet.experimental import mixed_precision_global_state
32

Y
Yuan Gao 已提交
33
__all__ = ['BBoxHead', 'TwoFCHead', 'XConvNormHead']
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53


@register
@serializable
class BoxCoder(object):
    __op__ = fluid.layers.box_coder
    __append_doc__ = True

    def __init__(self,
                 prior_box_var=[0.1, 0.1, 0.2, 0.2],
                 code_type='decode_center_size',
                 box_normalized=False,
                 axis=1):
        super(BoxCoder, self).__init__()
        self.prior_box_var = prior_box_var
        self.code_type = code_type
        self.box_normalized = box_normalized
        self.axis = axis


Y
Yuan Gao 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
@register
class XConvNormHead(object):
    """
    RCNN head with serveral convolution layers

    Args:
        conv_num (int): num of convolution layers for the rcnn head
        conv_dim (int): num of filters for the conv layers
        mlp_dim (int): num of filters for the fc layers
    """
    __shared__ = ['norm_type', 'freeze_norm']

    def __init__(self,
                 num_conv=4,
                 conv_dim=256,
                 mlp_dim=1024,
                 norm_type=None,
                 freeze_norm=False):
        super(XConvNormHead, self).__init__()
        self.conv_dim = conv_dim
        self.mlp_dim = mlp_dim
        self.num_conv = num_conv
        self.norm_type = norm_type
        self.freeze_norm = freeze_norm

    def __call__(self, roi_feat):
        conv = roi_feat
        fan = self.conv_dim * 3 * 3
        initializer = MSRA(uniform=False, fan_in=fan)
        for i in range(self.num_conv):
            name = 'bbox_head_conv' + str(i)
            conv = ConvNorm(
                conv,
                self.conv_dim,
                3,
                act='relu',
                initializer=initializer,
                norm_type=self.norm_type,
                freeze_norm=self.freeze_norm,
                name=name,
                norm_name=name)
        fan = conv.shape[1] * conv.shape[2] * conv.shape[3]
        head_heat = fluid.layers.fc(input=conv,
                                    size=self.mlp_dim,
                                    act='relu',
                                    name='fc6' + name,
                                    param_attr=ParamAttr(
                                        name='fc6%s_w' % name,
                                        initializer=Xavier(fan_out=fan)),
                                    bias_attr=ParamAttr(
                                        name='fc6%s_b' % name,
                                        learning_rate=2,
                                        regularizer=L2Decay(0.)))
        return head_heat


110 111 112 113 114 115
@register
class TwoFCHead(object):
    """
    RCNN head with two Fully Connected layers

    Args:
Y
Yuan Gao 已提交
116
        mlp_dim (int): num of filters for the fc layers
117 118
    """

Y
Yuan Gao 已提交
119
    def __init__(self, mlp_dim=1024):
120
        super(TwoFCHead, self).__init__()
Y
Yuan Gao 已提交
121
        self.mlp_dim = mlp_dim
122 123 124

    def __call__(self, roi_feat):
        fan = roi_feat.shape[1] * roi_feat.shape[2] * roi_feat.shape[3]
Y
Yang Zhang 已提交
125 126 127 128 129 130

        mixed_precision_enabled = mixed_precision_global_state() is not None

        if mixed_precision_enabled:
            roi_feat = fluid.layers.cast(roi_feat, 'float16')

131
        fc6 = fluid.layers.fc(input=roi_feat,
Y
Yuan Gao 已提交
132
                              size=self.mlp_dim,
133 134 135 136 137 138 139 140 141 142
                              act='relu',
                              name='fc6',
                              param_attr=ParamAttr(
                                  name='fc6_w',
                                  initializer=Xavier(fan_out=fan)),
                              bias_attr=ParamAttr(
                                  name='fc6_b',
                                  learning_rate=2.,
                                  regularizer=L2Decay(0.)))
        head_feat = fluid.layers.fc(input=fc6,
Y
Yuan Gao 已提交
143
                                    size=self.mlp_dim,
144 145 146 147 148 149 150 151
                                    act='relu',
                                    name='fc7',
                                    param_attr=ParamAttr(
                                        name='fc7_w', initializer=Xavier()),
                                    bias_attr=ParamAttr(
                                        name='fc7_b',
                                        learning_rate=2.,
                                        regularizer=L2Decay(0.)))
Y
Yang Zhang 已提交
152 153 154 155

        if mixed_precision_enabled:
            head_feat = fluid.layers.cast(head_feat, 'float32')

156 157 158 159 160 161 162 163 164
        return head_feat


@register
class BBoxHead(object):
    """
    RCNN bbox head

    Args:
165
        head (object): the head module instance, e.g., `ResNetC5`, `TwoFCHead`
166 167 168 169
        box_coder (object): `BoxCoder` instance
        nms (object): `MultiClassNMS` instance
        num_classes: number of output classes
    """
littletomatodonkey's avatar
littletomatodonkey 已提交
170
    __inject__ = ['head', 'box_coder', 'nms', 'bbox_loss']
171
    __shared__ = ['num_classes']
172 173 174 175 176

    def __init__(self,
                 head,
                 box_coder=BoxCoder().__dict__,
                 nms=MultiClassNMS().__dict__,
littletomatodonkey's avatar
littletomatodonkey 已提交
177
                 bbox_loss=SmoothL1Loss().__dict__,
178 179 180 181 182 183
                 num_classes=81):
        super(BBoxHead, self).__init__()
        self.head = head
        self.num_classes = num_classes
        self.box_coder = box_coder
        self.nms = nms
littletomatodonkey's avatar
littletomatodonkey 已提交
184
        self.bbox_loss = bbox_loss
185 186 187 188
        if isinstance(box_coder, dict):
            self.box_coder = BoxCoder(**box_coder)
        if isinstance(nms, dict):
            self.nms = MultiClassNMS(**nms)
littletomatodonkey's avatar
littletomatodonkey 已提交
189 190
        if isinstance(bbox_loss, dict):
            self.bbox_loss = SmoothL1Loss(**bbox_loss)
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        self.head_feat = None

    def get_head_feat(self, input=None):
        """
        Get the bbox head feature map.
        """

        if input is not None:
            feat = self.head(input)
            if isinstance(feat, OrderedDict):
                feat = list(feat.values())[0]
            self.head_feat = feat
        return self.head_feat

    def _get_output(self, roi_feat):
        """
        Get bbox head output.

        Args:
            roi_feat (Variable): RoI feature from RoIExtractor.

        Returns:
            cls_score(Variable): Output of rpn head with shape of
                [N, num_anchors, H, W].
            bbox_pred(Variable): Output of rpn head with shape of
                [N, num_anchors * 4, H, W].
        """
        head_feat = self.get_head_feat(roi_feat)
        # when ResNetC5 output a single feature map
Y
Yuan Gao 已提交
220 221
        if not isinstance(self.head, TwoFCHead) and not isinstance(
                self.head, XConvNormHead):
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
            head_feat = fluid.layers.pool2d(
                head_feat, pool_type='avg', global_pooling=True)
        cls_score = fluid.layers.fc(input=head_feat,
                                    size=self.num_classes,
                                    act=None,
                                    name='cls_score',
                                    param_attr=ParamAttr(
                                        name='cls_score_w',
                                        initializer=Normal(
                                            loc=0.0, scale=0.01)),
                                    bias_attr=ParamAttr(
                                        name='cls_score_b',
                                        learning_rate=2.,
                                        regularizer=L2Decay(0.)))
        bbox_pred = fluid.layers.fc(input=head_feat,
                                    size=4 * self.num_classes,
                                    act=None,
                                    name='bbox_pred',
                                    param_attr=ParamAttr(
                                        name='bbox_pred_w',
                                        initializer=Normal(
                                            loc=0.0, scale=0.001)),
                                    bias_attr=ParamAttr(
                                        name='bbox_pred_b',
                                        learning_rate=2.,
                                        regularizer=L2Decay(0.)))
        return cls_score, bbox_pred

    def get_loss(self, roi_feat, labels_int32, bbox_targets,
                 bbox_inside_weights, bbox_outside_weights):
        """
        Get bbox_head loss.

        Args:
            roi_feat (Variable): RoI feature from RoIExtractor.
            labels_int32(Variable): Class label of a RoI with shape [P, 1].
                P is the number of RoI.
            bbox_targets(Variable): Box label of a RoI with shape
                [P, 4 * class_nums].
            bbox_inside_weights(Variable): Indicates whether a box should
                contribute to loss. Same shape as bbox_targets.
            bbox_outside_weights(Variable): Indicates whether a box should
                contribute to loss. Same shape as bbox_targets.

        Return:
            Type: Dict
                loss_cls(Variable): bbox_head loss.
                loss_bbox(Variable): bbox_head loss.
        """

        cls_score, bbox_pred = self._get_output(roi_feat)

        labels_int64 = fluid.layers.cast(x=labels_int32, dtype='int64')
        labels_int64.stop_gradient = True
        loss_cls = fluid.layers.softmax_with_cross_entropy(
            logits=cls_score, label=labels_int64, numeric_stable_mode=True)
        loss_cls = fluid.layers.reduce_mean(loss_cls)
littletomatodonkey's avatar
littletomatodonkey 已提交
279
        loss_bbox = self.bbox_loss(
280 281 282
            x=bbox_pred,
            y=bbox_targets,
            inside_weight=bbox_inside_weights,
littletomatodonkey's avatar
littletomatodonkey 已提交
283
            outside_weight=bbox_outside_weights)
284 285 286
        loss_bbox = fluid.layers.reduce_mean(loss_bbox)
        return {'loss_cls': loss_cls, 'loss_bbox': loss_bbox}

W
wangguanzhong 已提交
287 288 289 290 291 292
    def get_prediction(self,
                       roi_feat,
                       rois,
                       im_info,
                       im_shape,
                       return_box_score=False):
293 294 295 296
        """
        Get prediction bounding box in test stage.

        Args:
W
wangguanzhong 已提交
297
            roi_feat (Variable): RoI feature from RoIExtractor.
298 299 300 301
            rois (Variable): Output of generate_proposals in rpn head.
            im_info (Variable): A 2-D LoDTensor with shape [B, 3]. B is the
                number of input images, each element consists of im_height,
                im_width, im_scale.
W
wangguanzhong 已提交
302
            im_shape (Variable): Actual shape of original image with shape
Y
Yang Zhang 已提交
303
                [B, 3]. B is the number of images, each element consists of
W
wangguanzhong 已提交
304
                original_height, original_width, 1
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

        Returns:
            pred_result(Variable): Prediction result with shape [N, 6]. Each
                row has 6 values: [label, confidence, xmin, ymin, xmax, ymax].
                N is the total number of prediction.
        """
        cls_score, bbox_pred = self._get_output(roi_feat)

        im_scale = fluid.layers.slice(im_info, [1], starts=[2], ends=[3])
        im_scale = fluid.layers.sequence_expand(im_scale, rois)
        boxes = rois / im_scale
        cls_prob = fluid.layers.softmax(cls_score, use_cudnn=False)
        bbox_pred = fluid.layers.reshape(bbox_pred, (-1, self.num_classes, 4))
        decoded_box = self.box_coder(prior_box=boxes, target_box=bbox_pred)
        cliped_box = fluid.layers.box_clip(input=decoded_box, im_info=im_shape)
W
wangguanzhong 已提交
320 321
        if return_box_score:
            return {'bbox': cliped_box, 'score': cls_prob}
322 323
        pred_result = self.nms(bboxes=cliped_box, scores=cls_prob)
        return {'bbox': pred_result}