acfpn.py 12.2 KB
Newer Older
L
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict
import copy
from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Xavier
from paddle.fluid.regularizer import L2Decay

from ppdet.core.workspace import register
from ppdet.modeling.ops import ConvNorm

__all__ = ['ACFPN']


@register
class ACFPN(object):
    """
    Attention-guided Context Feature Pyramid Network for Object Detection,
        see https://arxiv.org/abs/2005.11475

    Args:
        num_chan (int): number of feature channels
        min_level (int): lowest level of the backbone feature map to use
        max_level (int): highest level of the backbone feature map to use
        spatial_scale (list): feature map scaling factor
        has_extra_convs (bool): whether has extral convolutions in higher levels
        norm_type (str|None): normalization type, 'bn'/'sync_bn'/'affine_channel'
        use_c5 (bool): whether to use C5 as the feature map.
        norm_groups (int): group number of group norm.
    """
    __shared__ = ['norm_type', 'freeze_norm']

    def __init__(self,
                 num_chan=256,
                 min_level=2,
                 max_level=6,
                 spatial_scale=[1. / 32., 1. / 16., 1. / 8., 1. / 4.],
                 has_extra_convs=False,
                 norm_type=None,
                 freeze_norm=False,
                 use_c5=True,
                 norm_groups=32):
        self.freeze_norm = freeze_norm
        self.num_chan = num_chan
        self.min_level = min_level
        self.max_level = max_level
        self.spatial_scale = spatial_scale
        self.has_extra_convs = has_extra_convs
        self.norm_type = norm_type
        self.use_c5 = use_c5
        self.norm_groups = norm_groups

    def _add_topdown_lateral(self, body_name, body_input, upper_output):
        lateral_name = 'fpn_inner_' + body_name + '_lateral'
        topdown_name = 'fpn_topdown_' + body_name
        fan = body_input.shape[1]
        if self.norm_type:
            initializer = Xavier(fan_out=fan)
            lateral = ConvNorm(
                body_input,
                self.num_chan,
                1,
                initializer=initializer,
                norm_type=self.norm_type,
                freeze_norm=self.freeze_norm,
                name=lateral_name,
                norm_name=lateral_name)
        else:
            lateral = fluid.layers.conv2d(
                body_input,
                self.num_chan,
                1,
                param_attr=ParamAttr(
                    name=lateral_name + "_w", initializer=Xavier(fan_out=fan)),
                bias_attr=ParamAttr(
                    name=lateral_name + "_b",
                    learning_rate=2.,
                    regularizer=L2Decay(0.)),
                name=lateral_name)
        topdown = fluid.layers.resize_nearest(
            upper_output, scale=2., name=topdown_name)

        return lateral + topdown

    def dense_aspp_block(self, input, num_filters1, num_filters2, dilation_rate,
                         dropout_prob, name):

        conv = ConvNorm(
            input,
            num_filters=num_filters1,
            filter_size=1,
            stride=1,
            groups=1,
            norm_decay=0.,
            norm_type='gn',
            norm_groups=self.norm_groups,
            dilation=dilation_rate,
            lr_scale=1,
            freeze_norm=False,
            act="relu",
            norm_name=name + "_gn",
            initializer=None,
            bias_attr=False,
            name=name + "_gn")

        conv = fluid.layers.conv2d(
            conv,
            num_filters2,
            filter_size=3,
            padding=dilation_rate,
            dilation=dilation_rate,
            act="relu",
            param_attr=ParamAttr(name=name + "_conv_w"),
            bias_attr=ParamAttr(name=name + "_conv_b"), )

        if dropout_prob > 0:
            conv = fluid.layers.dropout(conv, dropout_prob=dropout_prob)

        return conv

    def dense_aspp(self, input, name=None):
        dropout0 = 0.1
        d_feature0 = 512
        d_feature1 = 256

        aspp3 = self.dense_aspp_block(
            input,
            num_filters1=d_feature0,
            num_filters2=d_feature1,
            dropout_prob=dropout0,
            name=name + '_aspp3',
            dilation_rate=3)
        conv = fluid.layers.concat([aspp3, input], axis=1)

        aspp6 = self.dense_aspp_block(
            conv,
            num_filters1=d_feature0,
            num_filters2=d_feature1,
            dropout_prob=dropout0,
            name=name + '_aspp6',
            dilation_rate=6)
        conv = fluid.layers.concat([aspp6, conv], axis=1)

        aspp12 = self.dense_aspp_block(
            conv,
            num_filters1=d_feature0,
            num_filters2=d_feature1,
            dropout_prob=dropout0,
            name=name + '_aspp12',
            dilation_rate=12)
        conv = fluid.layers.concat([aspp12, conv], axis=1)

        aspp18 = self.dense_aspp_block(
            conv,
            num_filters1=d_feature0,
            num_filters2=d_feature1,
            dropout_prob=dropout0,
            name=name + '_aspp18',
            dilation_rate=18)
        conv = fluid.layers.concat([aspp18, conv], axis=1)

        aspp24 = self.dense_aspp_block(
            conv,
            num_filters1=d_feature0,
            num_filters2=d_feature1,
            dropout_prob=dropout0,
            name=name + '_aspp24',
            dilation_rate=24)

        conv = fluid.layers.concat(
            [aspp3, aspp6, aspp12, aspp18, aspp24], axis=1)

        conv = ConvNorm(
            conv,
            num_filters=self.num_chan,
            filter_size=1,
            stride=1,
            groups=1,
            norm_decay=0.,
            norm_type='gn',
            norm_groups=self.norm_groups,
            dilation=1,
            lr_scale=1,
            freeze_norm=False,
            act="relu",
            norm_name=name + "_dense_aspp_reduce_gn",
            initializer=None,
            bias_attr=False,
            name=name + "_dense_aspp_reduce_gn")

        return conv

    def get_output(self, body_dict):
        """
        Add FPN onto backbone.

        Args:
            body_dict(OrderedDict): Dictionary of variables and each element is the
                output of backbone.

        Return:
            fpn_dict(OrderedDict): A dictionary represents the output of FPN with
                their name.
            spatial_scale(list): A list of multiplicative spatial scale factor.
        """
        spatial_scale = copy.deepcopy(self.spatial_scale)
        body_name_list = list(body_dict.keys())[::-1]
        num_backbone_stages = len(body_name_list)
        self.fpn_inner_output = [[] for _ in range(num_backbone_stages)]
        fpn_inner_name = 'fpn_inner_' + body_name_list[0]
        body_input = body_dict[body_name_list[0]]
        fan = body_input.shape[1]
        if self.norm_type:
            initializer = Xavier(fan_out=fan)
            self.fpn_inner_output[0] = ConvNorm(
                body_input,
                self.num_chan,
                1,
                initializer=initializer,
                norm_type=self.norm_type,
                freeze_norm=self.freeze_norm,
                name=fpn_inner_name,
                norm_name=fpn_inner_name)
        else:
            self.fpn_inner_output[0] = fluid.layers.conv2d(
                body_input,
                self.num_chan,
                1,
                param_attr=ParamAttr(
                    name=fpn_inner_name + "_w",
                    initializer=Xavier(fan_out=fan)),
                bias_attr=ParamAttr(
                    name=fpn_inner_name + "_b",
                    learning_rate=2.,
                    regularizer=L2Decay(0.)),
                name=fpn_inner_name)

        self.fpn_inner_output[0] += self.dense_aspp(
            self.fpn_inner_output[0], name="acfpn")

        for i in range(1, num_backbone_stages):
            body_name = body_name_list[i]
            body_input = body_dict[body_name]
            top_output = self.fpn_inner_output[i - 1]
            fpn_inner_single = self._add_topdown_lateral(body_name, body_input,
                                                         top_output)
            self.fpn_inner_output[i] = fpn_inner_single
        fpn_dict = {}
        fpn_name_list = []
        for i in range(num_backbone_stages):
            fpn_name = 'fpn_' + body_name_list[i]
            fan = self.fpn_inner_output[i].shape[1] * 3 * 3
            if self.norm_type:
                initializer = Xavier(fan_out=fan)
                fpn_output = ConvNorm(
                    self.fpn_inner_output[i],
                    self.num_chan,
                    3,
                    initializer=initializer,
                    norm_type=self.norm_type,
                    freeze_norm=self.freeze_norm,
                    name=fpn_name,
                    norm_name=fpn_name)
            else:
                fpn_output = fluid.layers.conv2d(
                    self.fpn_inner_output[i],
                    self.num_chan,
                    filter_size=3,
                    padding=1,
                    param_attr=ParamAttr(
                        name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
                    bias_attr=ParamAttr(
                        name=fpn_name + "_b",
                        learning_rate=2.,
                        regularizer=L2Decay(0.)),
                    name=fpn_name)
            fpn_dict[fpn_name] = fpn_output
            fpn_name_list.append(fpn_name)
        if not self.has_extra_convs and self.max_level - self.min_level == len(
                spatial_scale):
            body_top_name = fpn_name_list[0]
            body_top_extension = fluid.layers.pool2d(
                fpn_dict[body_top_name],
                1,
                'max',
                pool_stride=2,
                name=body_top_name + '_subsampled_2x')
            fpn_dict[body_top_name + '_subsampled_2x'] = body_top_extension
            fpn_name_list.insert(0, body_top_name + '_subsampled_2x')
            spatial_scale.insert(0, spatial_scale[0] * 0.5)
        # Coarser FPN levels introduced for RetinaNet
        highest_backbone_level = self.min_level + len(spatial_scale) - 1
        if self.has_extra_convs and self.max_level > highest_backbone_level:
            if self.use_c5:
                fpn_blob = body_dict[body_name_list[0]]
            else:
                fpn_blob = fpn_dict[fpn_name_list[0]]
            for i in range(highest_backbone_level + 1, self.max_level + 1):
                fpn_blob_in = fpn_blob
                fpn_name = 'fpn_' + str(i)
                if i > highest_backbone_level + 1:
                    fpn_blob_in = fluid.layers.relu(fpn_blob)
                fan = fpn_blob_in.shape[1] * 3 * 3
                fpn_blob = fluid.layers.conv2d(
                    input=fpn_blob_in,
                    num_filters=self.num_chan,
                    filter_size=3,
                    stride=2,
                    padding=1,
                    param_attr=ParamAttr(
                        name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
                    bias_attr=ParamAttr(
                        name=fpn_name + "_b",
                        learning_rate=2.,
                        regularizer=L2Decay(0.)),
                    name=fpn_name)
                fpn_dict[fpn_name] = fpn_blob
                fpn_name_list.insert(0, fpn_name)
                spatial_scale.insert(0, spatial_scale[0] * 0.5)
        res_dict = OrderedDict([(k, fpn_dict[k]) for k in fpn_name_list])
        return res_dict, spatial_scale