preprocess_op.h 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <yaml-cpp/yaml.h>

#include <memory>
W
wangguanzhong 已提交
20
#include <string>
21
#include <unordered_map>
W
wangguanzhong 已提交
22 23
#include <utility>
#include <vector>
24 25 26

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
W
wangguanzhong 已提交
27
#include <opencv2/imgproc/imgproc.hpp>
28 29 30 31 32 33 34 35 36 37 38 39 40

namespace PaddleDetection {

// Object for storing all preprocessed data
class ImageBlob {
 public:
  // Original image width and height
  std::vector<int> ori_im_size_;
  // Buffer for image data after preprocessing
  std::vector<float> im_data_;
  // Original image width, height, shrink in float format
  std::vector<float> ori_im_size_f_;
  // Evaluation image width and height
W
wangguanzhong 已提交
41
  std::vector<float> eval_im_size_f_;
W
wangguanzhong 已提交
42 43
  // Scale factor for image size to origin image size
  std::vector<float> scale_factor_f_;
44 45 46 47 48 49 50 51 52
};

// Abstraction of preprocessing opration class
class PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item, const std::string& arch) = 0;
  virtual void Run(cv::Mat* im, ImageBlob* data) = 0;
};

W
wangguanzhong 已提交
53
class InitInfo : public PreprocessOp {
54 55 56 57 58
 public:
  virtual void Init(const YAML::Node& item, const std::string& arch) {}
  virtual void Run(cv::Mat* im, ImageBlob* data);
};

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
class Normalize : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item, const std::string& arch) {
    mean_ = item["mean"].as<std::vector<float>>();
    scale_ = item["std"].as<std::vector<float>>();
    is_channel_first_ = item["is_channel_first"].as<bool>();
    is_scale_ = item["is_scale"].as<bool>();
  }

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  // CHW or HWC
  bool is_channel_first_;
  bool is_scale_;
  std::vector<float> mean_;
  std::vector<float> scale_;
};

class Permute : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item, const std::string& arch) {
W
wangguanzhong 已提交
81 82
    to_bgr_ = item["to_bgr"].as<bool>();
    is_channel_first_ = item["channel_first"].as<bool>();
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  }

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  // RGB to BGR
  bool to_bgr_;
  // CHW or HWC
  bool is_channel_first_;
};

class Resize : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item, const std::string& arch) {
    arch_ = arch;
    interp_ = item["interp"].as<int>();
    max_size_ = item["max_size"].as<int>();
W
wangguanzhong 已提交
100 101
    if (item["image_shape"].IsDefined()) {
      image_shape_ = item["image_shape"].as<std::vector<int>>();
102 103
    }
    target_size_ = item["target_size"].as<int>();
W
wangguanzhong 已提交
104
  }
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

  // Compute best resize scale for x-dimension, y-dimension
  std::pair<float, float> GenerateScale(const cv::Mat& im);

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  std::string arch_;
  int interp_;
  int max_size_;
  int target_size_;
  std::vector<int> image_shape_;
};

// Models with FPN need input shape % stride == 0
class PadStride : public PreprocessOp {
 public:
  virtual void Init(const YAML::Node& item, const std::string& arch) {
    stride_ = item["stride"].as<int>();
  }

  virtual void Run(cv::Mat* im, ImageBlob* data);

 private:
  int stride_;
};

class Preprocessor {
 public:
  void Init(const YAML::Node& config_node, const std::string& arch) {
    arch_ = arch;
136 137
    // initialize image info at first
    ops_["InitInfo"] = std::make_shared<InitInfo>();
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    for (const auto& item : config_node) {
      auto op_name = item["type"].as<std::string>();
      ops_[op_name] = CreateOp(op_name);
      ops_[op_name]->Init(item, arch);
    }
  }

  std::shared_ptr<PreprocessOp> CreateOp(const std::string& name) {
    if (name == "Resize") {
      return std::make_shared<Resize>();
    } else if (name == "Permute") {
      return std::make_shared<Permute>();
    } else if (name == "Normalize") {
      return std::make_shared<Normalize>();
    } else if (name == "PadStride") {
      return std::make_shared<PadStride>();
    }
    return nullptr;
  }

  void Run(cv::Mat* im, ImageBlob* data);

 public:
  static const std::vector<std::string> RUN_ORDER;

 private:
  std::string arch_;
  std::unordered_map<std::string, std::shared_ptr<PreprocessOp>> ops_;
};

}  // namespace PaddleDetection