README_en.md 10.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4
English | [简体中文](README_cn.md)

Documentation:[https://paddledetection.readthedocs.io](https://paddledetection.readthedocs.io)

M
mls1999725 已提交
5
# Introduction
Q
qingqing01 已提交
6

M
mls1999725 已提交
7
PaddleDetection is an end-to-end object detection development kit based on PaddlePaddle, which aims to help developers in the whole development of constructing, training, optimizing and deploying detection models in a faster and better way.
Q
qingqing01 已提交
8

M
mls1999725 已提交
9
PaddleDetection implements varied mainstream object detection algorithms in modular design, and provides wealthy data augmentation methods, network components(such as backbones), loss functions, etc., and integrates abilities of model compression and cross-platform high-performance deployment.
Q
qingqing01 已提交
10

M
mls1999725 已提交
11
After a long time of industry practice polishing, PaddleDetection has had smooth and excellent user experience, it has been widely used by developers in more than ten industries such as industrial quality inspection, remote sensing image object detection, automatic inspection, new retail, Internet, and scientific research.
Q
qingqing01 已提交
12 13

<div align="center">
M
mls1999725 已提交
14
  <img src="docs/images/football.gif" width='800'/>
Q
qingqing01 已提交
15 16
</div>

M
mls1999725 已提交
17 18
### Product dynamic

G
Guanghua Yu 已提交
19 20
- 2020.11.20: Release `release/0.5` version, Please refer to [change log](docs/CHANGELOG.md) for details.
- 2020.11.10: Added [SOLOv2](configs/solov2) as an instance segmentation model, which reached 38.6 FPS on a single Tesla V100, 38.8 mask AP on Coco-Val dataset, and  inference speed increased by 24% and mAP by 2.4 percentage points.
G
Guanghua Yu 已提交
21
- 2020.10.30: PP-YOLO support rectangular image input, and add a new PACT quantization strategy for slim。
G
Guanghua Yu 已提交
22
- 2020.09.30: Released the [mobile-side detection demo](deploy/android_demo), and you can directly scan the code for installation experience.
M
mls1999725 已提交
23
- 2020.09.21-27: [Object detection 7 days of punching class] Hand in hand to teach you from the beginning to the advanced level, in-depth understanding of the object detection algorithm life. Join the course QQ group (1136406895) to study together :)
G
Guanghua Yu 已提交
24
- 2020.07.24: [PP-YOLO](https://arxiv.org/abs/2007.12099), which is **the most practical** object detection model, was released, it deeply considers the double demands of industrial applications for accuracy and speed, and reached accuracy as 45.2% (the latest 45.9%) on COCO dataset, inference speed as 72.9 FPS on a single Test V100. Please refer to [PP-YOLO](configs/ppyolo/README.md) for details.
M
mls1999725 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
- 2020.06.11: Publish 676 classes of large-scale server-side practical object detection models that are applicable to most application scenarios and can be used directly for prediction or for fine-tuning other tasks.

### Features

- **Rich Models**
PaddleDetection provides rich of models, including **100+ pre-trained models** such as **object detection**, **instance segmentation**, **face detection** etc. It covers a variety of **global competition champion** schemes.

- **Use Concisely**
Modular design, decouple each network component, developers easily build and try various detection models and optimization strategies, quickly get high-performance, customized algorithm.

- **Getting Through End to End**
From data augmentation, constructing models, training, compression, depolyment, get through end to end, and complete support for multi-architecture, multi-device deployment for **cloud and edge device**.

- **High Performance:**
Based on the high performance core of PaddlePaddle, advantages of training speed and memory occupation are obvious. Support FP16 training, support multi-machine training.

#### Overview of Kit Structures

<table>
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Architectures</b>
      </td>
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Components</b>
      </td>
      <td>
        <b>Data Augmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
        <ul><li><b>Two-Stage Detection</b></li>
          <ul>
            <li>Faster RCNN</li>
            <li>FPN</li>
            <li>Cascade-RCNN</li>
            <li>Libra RCNN</li>
            <li>Hybrid Task RCNN</li>
            <li>PSS-Det RCNN</li>
          </ul>
        </ul>
        <ul><li><b>One-Stage Detection</b></li>
          <ul>
            <li>RetinaNet</li>
            <li>YOLOv3</li>
            <li>YOLOv4</li>  
            <li>PP-YOLO</li>
            <li>SSD</li>
          </ul>
        </ul>
        <ul><li><b>Anchor Free</b></li>
          <ul>
            <li>CornerNet-Squeeze</li>
            <li>FCOS</li>  
            <li>TTFNet</li>
          </ul>
        </ul>
        <ul>
          <li><b>Instance Segmentation</b></li>
            <ul>
             <li>Mask RCNN</li>
             <li>SOLOv2</li>
            </ul>
        </ul>
        <ul>
          <li><b>Face-Detction</b></li>
            <ul>
             <li>FaceBoxes</li>
             <li>BlazeFace</li>
             <li>BlazeFace-NAS</li>
            </ul>
        </ul>
      </td>
      <td>
        <ul>
          <li>ResNet(&vd)</li>
          <li>ResNeXt(&vd)</li>
          <li>SENet</li>
          <li>Res2Net</li>
          <li>HRNet</li>
          <li>Hourglass</li>
          <li>CBNet</li>
          <li>GCNet</li>
          <li>DarkNet</li>
          <li>CSPDarkNet</li>
          <li>VGG</li>
          <li>MobileNetv1/v3</li>  
          <li>GhostNet</li>
          <li>Efficientnet</li>  
        </ul>
      </td>
      <td>
        <ul><li><b>Common</b></li>
          <ul>
            <li>Sync-BN</li>
            <li>Group Norm</li>
            <li>DCNv2</li>
            <li>Non-local</li>
          </ul>  
        </ul>
        <ul><li><b>FPN</b></li>
          <ul>
            <li>BiFPN</li>
            <li>BFP</li>  
            <li>HRFPN</li>
            <li>ACFPN</li>
          </ul>  
        </ul>  
        <ul><li><b>Loss</b></li>
          <ul>
            <li>Smooth-L1</li>
            <li>GIoU/DIoU/CIoU</li>  
            <li>IoUAware</li>
          </ul>  
        </ul>  
        <ul><li><b>Post-processing</b></li>
          <ul>
            <li>SoftNMS</li>
            <li>MatrixNMS</li>  
          </ul>  
        </ul>
        <ul><li><b>Speed</b></li>
          <ul>
            <li>FP16 training</li>
            <li>Multi-machine training </li>  
          </ul>  
        </ul>  
      </td>
      <td>
        <ul>
          <li>Resize</li>  
          <li>Flipping</li>  
          <li>Expand</li>
          <li>Crop</li>
          <li>Color Distort</li>  
          <li>Random Erasing</li>  
          <li>Mixup </li>
          <li>Cutmix </li>
          <li>Grid Mask</li>
          <li>Auto Augment</li>  
        </ul>  
      </td>  
    </tr>


</td>
    </tr>
  </tbody>
</table>

#### Overview of Model Performance
The relationship between COCO mAP and FPS on Tesla V100 of representative models of each architectures and backbones.
Q
qingqing01 已提交
182 183

<div align="center">
M
mls1999725 已提交
184
  <img src="docs/images/map_fps.png" />
Q
qingqing01 已提交
185 186 187 188
</div>

**NOTE:**

M
mls1999725 已提交
189
- `CBResNet stands` for `Cascade-Faster-RCNN-CBResNet200vd-FPN`, which has highest mAP on COCO as 53.3%
Q
qingqing01 已提交
190

M
mls1999725 已提交
191 192 193 194
- `Cascade-Faster-RCNN` stands for `Cascade-Faster-RCNN-ResNet50vd-DCN`, which has been optimized to 20 FPS inference speed when COCO mAP as 47.8% in PaddleDetection models

- The enhanced PaddleDetection model `YOLOv3-ResNet50vd-DCN` is 10.6 absolute percentage points higher than paper on COCO mAP, and inference speed is 61.3 fps, nearly 70% faster than the darknet framework.
All these models can be get in [Model Zoo](#ModelZoo)
Q
qingqing01 已提交
195 196


M
mls1999725 已提交
197
## Tutorials
Q
qingqing01 已提交
198 199 200

### Get Started

M
mls1999725 已提交
201 202
- [Installation guide](docs/tutorials/INSTALL_cn.md)
- [Quick start on small dataset](docs/tutorials/QUICK_STARTED_cn.md)
C
cnn 已提交
203 204
- [Prepare dataset](docs/tutorials/PrepareDataSet.md)
- [Train/Evaluation/Inference/Deploy](docs/tutorials/DetectionPipeline.md)
Q
qingqing01 已提交
205 206 207
- [How to train a custom dataset](docs/tutorials/Custom_DataSet.md)
- [FAQ](docs/FAQ.md)

M
mls1999725 已提交
208
### Advanced Tutorials
Q
qingqing01 已提交
209

M
mls1999725 已提交
210 211
- Parameter configuration
  - [Introduction to the configuration workflow](docs/advanced_tutorials/config_doc/CONFIG_cn.md)
Q
qingqing01 已提交
212
  - [Parameter configuration for RCNN model](docs/advanced_tutorials/config_doc/RCNN_PARAMS_DOC.md)
M
mls1999725 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  - [Parameter configuration for YOLOv3 model](docs/advanced_tutorials/config_doc/yolov3_mobilenet_v1.md)

- Tansfer learning
  - [How to load pretrained model](docs/advanced_tutorials/TRANSFER_LEARNING_cn.md)

- Model Compression(Based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim))
  - [Model compression benchmark](slim)
  - [Quantization](slim/quantization)
  - [Model pruning](slim/prune)
  - [Model distillation](slim/distillation)
  - [Neural Architecture Search](slim/nas)

- Inference and deployment
  - [Export model for inference](docs/advanced_tutorials/deploy/EXPORT_MODEL.md)
  - [Python inference](deploy/python)
  - [C++ inference](deploy/cpp)
  - [Mobile](https://github.com/PaddlePaddle/Paddle-Lite-Demo)
  - [Serving](deploy/serving)
  - [Inference benchmark](docs/advanced_tutorials/deploy/BENCHMARK_INFER_cn.md)

- Advanced development
  - [New data augmentations](docs/advanced_tutorials/READER.md)
  - [New detection algorithms](docs/advanced_tutorials/MODEL_TECHNICAL.md)

Q
qingqing01 已提交
237 238 239

## Model Zoo

M
mls1999725 已提交
240 241 242 243 244 245 246
- Universal object detection
  - [Model library and baselines](docs/MODEL_ZOO_cn.md)
  - [Mobile models](configs/mobile/README.md)
  - [Anchor free models](configs/anchor_free/README.md)
  - [PP-YOLO](configs/ppyolo/README_cn.md)
  - [676 classes of object detection](docs/featured_model/LARGE_SCALE_DET_MODEL.md)
  - [Two-stage practical PSS-Det](configs/rcnn_enhance/README.md)
Q
qingqing01 已提交
247 248
- Universal instance segmentation
  - [SOLOv2](configs/solov2/README.md)
M
mls1999725 已提交
249 250 251 252 253 254 255 256
- Vertical field
  - [Face detection](docs/featured_model/FACE_DETECTION.md)
  - [Pedestrian detection](docs/featured_model/CONTRIB_cn.md)
  - [Vehicle detection](docs/featured_model/CONTRIB_cn.md)
- Competition Plan
  - [Objects365 2019 Challenge champion model](docs/featured_model/champion_model/CACascadeRCNN.md)
  - [Best single model of Open Images 2019-Object Detction](docs/featured_model/champion_model/OIDV5_BASELINE_MODEL.md)

G
Guanghua Yu 已提交
257 258 259
## Applications

- [Christmas portrait automatic generation tool](application/christmas)
M
mls1999725 已提交
260 261 262

## Updates

K
Kaipeng Deng 已提交
263
v2.0-rc was released at `02/2021`, add dygraph version, which supports RCNN, YOLOv3, PP-YOLO, SSD/SSDLite, FCOS, TTFNet, SOLOv2, etc. supports model pruning and quantization, supports deploying and accelerating by TensorRT, etc. Please refer to [change log](docs/CHANGELOG.md) for details.
Q
qingqing01 已提交
264 265 266


## License
M
mls1999725 已提交
267

Q
qingqing01 已提交
268 269 270 271 272 273
PaddleDetection is released under the [Apache 2.0 license](LICENSE).


## Contributing

Contributions are highly welcomed and we would really appreciate your feedback!!