test_rmsprop_op.py 3.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
20 21


22 23 24 25
class TestRmspropOp1(OpTest):
    ''' Test RMSProp with explicit inputs
    '''

26 27 28 29
    def setUp(self):
        self.op_type = "rmsprop"

        param = np.random.random((123, 321)).astype("float32")
30 31
        mean_square = np.random.random((123, 321)).astype("float32")
        learning_rate = np.array([0.01]).astype("float32")
32 33 34 35
        grad = np.random.random((123, 321)).astype("float32")
        moment = np.zeros((123, 321)).astype("float32")

        epsilon = 1e-6
36 37
        decay = 0.9
        momentum = 0.0
38

K
Kavya Srinet 已提交
39 40
        self.inputs = {
            'Param': param,
41 42
            'MeanSquare': mean_square,
            'LearningRate': learning_rate,
K
Kavya Srinet 已提交
43 44
            'Grad': grad,
            'Moment': moment,
45 46
        }

47
        self.attrs = {'epsilon': epsilon, 'decay': decay, 'momentum': momentum}
K
Kavya Srinet 已提交
48

49 50 51 52
        ms_out = decay * mean_square + (1 - decay) * grad * grad
        moment_out = momentum * moment + \
            learning_rate * grad / np.sqrt(ms_out + epsilon)
        param_out = param - moment_out
53

54 55 56 57 58
        self.outputs = {
            'ParamOut': param_out,
            'MomentOut': moment_out,
            'MeanSquareOut': ms_out
        }
59 60 61 62 63

    def test_check_output(self):
        self.check_output()


64
class TestRmspropOp2(OpTest):
K
kavyasrinet 已提交
65
    '''Test RMSProp with default values for attributes
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    '''

    def setUp(self):
        self.op_type = "rmsprop"

        param = np.random.random((123, 321)).astype("float32")
        mean_square = np.random.random((123, 321)).astype("float32")
        learning_rate = np.array([0.01]).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        moment = np.zeros((123, 321)).astype("float32")

        epsilon = 1.0e-10
        decay = 0.9
        momentum = 0.0

        self.inputs = {
            'Param': param,
            'MeanSquare': mean_square,
            'LearningRate': learning_rate,
            'Grad': grad,
            'Moment': moment,
        }

        ms_out = decay * mean_square + (1 - decay) * grad * grad
        moment_out = momentum * moment + \
            learning_rate * grad / np.sqrt(ms_out + epsilon)
        param_out = param - moment_out

        self.outputs = {
            'ParamOut': param_out,
            'MomentOut': moment_out,
            'MeanSquareOut': ms_out
        }

    def test_check_output(self):
        self.check_output()


104 105
if __name__ == "__main__":
    unittest.main()