README.md 23.8 KB
Newer Older
K
Kaipeng Deng 已提交
1
English | [简体中文](README_cn.md)
K
Kaipeng Deng 已提交
2

K
Kaipeng Deng 已提交
3
# PP-YOLO
K
Kaipeng Deng 已提交
4

K
Kaipeng Deng 已提交
5 6 7 8 9 10
## Table of Contents
- [Introduction](#Introduction)
- [Model Zoo](#Model_Zoo)
- [Getting Start](#Getting_Start)
- [Future Work](#Future_Work)
- [Appendix](#Appendix)
K
Kaipeng Deng 已提交
11

K
Kaipeng Deng 已提交
12
## Introduction
K
Kaipeng Deng 已提交
13

14
[PP-YOLO](https://arxiv.org/abs/2007.12099) is a optimized model based on YOLOv3 in PaddleDetection,whose performance(mAP on COCO) and inference spped are better than [YOLOv4](https://arxiv.org/abs/2004.10934),PaddlePaddle 1.8.4(available on pip now) or [Daily Version](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev) is required to run this PP-YOLO。
K
Kaipeng Deng 已提交
15

K
Kaipeng Deng 已提交
16
PP-YOLO reached mmAP(IoU=0.5:0.95) as 45.9% on COCO test-dev2017 dataset, and inference speed of FP32 on single V100 is 72.9 FPS, inference speed of FP16 with TensorRT on single V100 is 155.6 FPS.
K
Kaipeng Deng 已提交
17 18 19 20 21

<div align="center">
  <img src="../../docs/images/ppyolo_map_fps.png" width=500 />
</div>

K
Kaipeng Deng 已提交
22
PP-YOLO improved performance and speed of YOLOv3 with following methods:
K
Kaipeng Deng 已提交
23

K
Kaipeng Deng 已提交
24 25
- Better backbone: ResNet50vd-DCN
- Larger training batch size: 8 GPUs and mini-batch size as 24 on each GPU
K
Kaipeng Deng 已提交
26 27 28 29 30 31 32
- [Drop Block](https://arxiv.org/abs/1810.12890)
- [Exponential Moving Average](https://www.investopedia.com/terms/e/ema.asp)
- [IoU Loss](https://arxiv.org/pdf/1902.09630.pdf)
- [Grid Sensitive](https://arxiv.org/abs/2004.10934)
- [Matrix NMS](https://arxiv.org/pdf/2003.10152.pdf)
- [CoordConv](https://arxiv.org/abs/1807.03247)
- [Spatial Pyramid Pooling](https://arxiv.org/abs/1406.4729)
K
Kaipeng Deng 已提交
33
- Better ImageNet pretrain weights
K
Kaipeng Deng 已提交
34

K
Kaipeng Deng 已提交
35
## Model Zoo
K
Kaipeng Deng 已提交
36

K
Kaipeng Deng 已提交
37
### PP-YOLO
K
Kaipeng Deng 已提交
38

K
Kaipeng Deng 已提交
39 40
|          Model           | GPU number | images/GPU |  backbone  | input shape | Box AP<sup>val</sup> | Box AP<sup>test</sup> | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config  |
|:------------------------:|:----------:|:----------:|:----------:| :----------:| :------------------: | :-------------------: | :------------: | :---------------------: | :------: | :-----: |
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     608     |           -          |         43.5          |       62       |          105.5          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/yolov4/yolov4_csdarknet.yml)                   |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     512     |           -          |         43.0          |       83       |          138.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/yolov4/yolov4_csdarknet.yml)                   |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     416     |           -          |         41.2          |       96       |          164.0          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/yolov4/yolov4_csdarknet.yml)                   |
| YOLOv4(AlexyAB)          |     -      |      -     | CSPDarknet |     320     |           -          |         38.0          |      123       |          199.0          | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov4_cspdarknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/yolov4/yolov4_csdarknet.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     608     |         44.8         |         45.2          |      72.9      |          155.6          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     512     |         43.9         |         44.4          |      89.9      |          188.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     416     |         42.1         |         42.5          |     109.1      |          215.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     320     |         38.9         |         39.3          |     132.2      |          242.2          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     608     |         45.3         |         45.9          |      72.9      |          155.6          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_2x.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     512     |         44.4         |         45.0          |      89.9      |          188.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_2x.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     416     |         42.7         |         43.2          |     109.1      |          215.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_2x.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     320     |         39.5         |         40.1          |     132.2      |          242.2          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_2x.yml)                   |
| PP-YOLO       |     4      |     32     | ResNet18vd |     512     |         29.3         |         29.5          |     357.1      |          657.9          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_r18vd.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_r18vd.yml)                  |
| PP-YOLO       |     4      |     32     | ResNet18vd |     416     |         28.6         |         28.9          |     409.8      |          719.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_r18vd.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_r18vd.yml)                  |
| PP-YOLO       |     4      |     32     | ResNet18vd |     320     |         26.2         |         26.4          |     480.7      |          763.4          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_r18vd.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_r18vd.yml)                   |
| PP-YOLOv2       |     8      |     12     | ResNet50vd |     640     |         49.1         |         49.5          |     68.9     |          106.5          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolov2_r50vd_dcn.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolov2_r50vd_dcn.yml)                   |
| PP-YOLOv2       |     8      |     12     | ResNet101vd |     640     |         49.7         |         50.3          |     49.5     |          87.0          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolov2_r101vd_dcn.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolov2_r101vd_dcn.yml)                   |
W
wangxinxin08 已提交
58

K
Kaipeng Deng 已提交
59

K
Kaipeng Deng 已提交
60
**Notes:**
K
Kaipeng Deng 已提交
61

62
- PP-YOLO is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,Box AP<sup>test</sup> is evaluation results of `mAP(IoU=0.5:0.95)`.
K
Kaipeng Deng 已提交
63 64 65 66 67 68
- PP-YOLO used 8 GPUs for training and mini-batch size as 24 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](../../docs/FAQ.md).
- PP-YOLO inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.5.1, TensorRT 5.1.2.2 in TensorRT mode.
- PP-YOLO FP32 inference speed testing uses inference model exported by `tools/export_model.py` and benchmarked by running `depoly/python/infer.py` with `--run_benchmark`. All testing results do not contains the time cost of data reading and post-processing(NMS), which is same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) in testing method.
- TensorRT FP16 inference speed testing exclude the time cost of bounding-box decoding(`yolo_box`) part comparing with FP32 testing above, which means that data reading, bounding-box decoding and post-processing(NMS) is excluded(test method same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) too)
- YOLOv4(AlexyAB) performance and inference speed is copy from single Tesla V100 testing results in [YOLOv4 github repo](https://github.com/AlexeyAB/darknet), Tesla V100 TensorRT FP16 inference speed is testing with tkDNN configuration and TensorRT 5.1.2.2 on single Tesla V100 based on [AlexyAB/darknet repo](https://github.com/AlexeyAB/darknet).
- Download and configuration of YOLOv4(AlexyAB) is reproduced model of YOLOv4 in PaddleDetection, whose evaluation performance is same as YOLOv4(AlexyAB), and finetune training is supported in PaddleDetection currently, reproducing by training from backbone pretrain weights is on working, see [PaddleDetection YOLOv4](../yolov4/README.md) for details.
69
- PP-YOLO trained with `batch_size=24` in each GPU with memory as 32G, configuation yaml with `batch_size=12` which can be trained on GPU with memory as 16G is provided as `ppyolo_2x_bs12.yml`, training with `batch_size=12` reached `mAP(IoU=0.5:0.95) = 45.1%` on COCO val2017 dataset, download weights by [ppyolo_2x_bs12 model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_2x_bs12.pdparams)
K
Kaipeng Deng 已提交
70

71
### PP-YOLO for mobile
K
Kaipeng Deng 已提交
72

73 74
|            Model             | GPU number | images/GPU | Model Size | input shape | Box AP<sup>val</sup> |  Box AP50<sup>val</sup> | Kirin 990 1xCore(FPS) | download | inference model download | config  |
|:----------------------------:|:----------:|:----------:| :--------: | :----------:| :------------------: |  :--------------------: | :-------------------: | :------: | :----------------------: | :-----: |
75 76
| PP-YOLO_MobileNetV3_large    |     4      |      32    |    18MB    |     320     |         23.2         |           42.6          |          15.6         | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_large.pdparams) | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_large.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_mobilenet_v3_large.yml)                   |
| PP-YOLO_MobileNetV3_small    |     4      |      32    |    11MB    |     320     |         17.2         |           33.8          |          28.6         | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_small.pdparams) | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_small.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_mobilenet_v3_small.yml)                   |
K
Kaipeng Deng 已提交
77

K
Kaipeng Deng 已提交
78 79
**Notes:**

80
- PP-YOLO_MobileNetV3 is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
K
Kaipeng Deng 已提交
81 82 83 84 85
- PP-YOLO_MobileNetV3 used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](../../docs/FAQ.md).
- PP-YOLO_MobileNetV3 inference speed is tested on Kirin 990 with 1 thread.

### Slim PP-YOLO

86 87
|            Model             | GPU number | images/GPU | Prune Ratio |        Teacher Model      | Model Size | input shape | Box AP<sup>val</sup> | Kirin 990 1xCore(FPS) | download | inference model download | config  |
|:----------------------------:|:----------:|:----------:| :---------: | :-----------------------: | :--------: | :----------:| :------------------: | :-------------------: | :------: | :----------------------: | :-----: |
88
| PP-YOLO_MobileNetV3_small    |     4      |      32    |     75%     | PP-YOLO_MobileNetV3_large |   4.2MB    |     320     |         16.2         |      39.8      | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_small_prune75_distillby_mobilenet_v3_large.pdparams) | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_mobilenet_v3_small_prune75_distillby_mobilenet_v3_large.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_mobilenet_v3_small.yml)                   |
89

C
cnn 已提交
90
- Slim PP-YOLO is trained by slim traing method from [Distill pruned model](../../slim/extensions/distill_pruned_model/README.md),distill training pruned PP-YOLO_MobileNetV3_small model with PP-YOLO_MobileNetV3_large model as the teacher model
91
- Pruning detectiom head of PP-YOLO model with ratio as 75%, while the arguments are `--pruned_params="yolo_block.0.2.conv.weights,yolo_block.0.tip.conv.weights,yolo_block.1.2.conv.weights,yolo_block.1.tip.conv.weights" --pruned_ratios="0.75,0.75,0.75,0.75"`
C
cnn 已提交
92
- For Slim PP-YOLO training, evaluation, inference and model exporting, please see [Distill pruned model](../../slim/extensions/distill_pruned_model/README.md)
K
Kaipeng Deng 已提交
93

K
Kaipeng Deng 已提交
94 95 96 97
### PP-YOLO tiny

|            Model             | GPU number | images/GPU | Model Size | Post Quant Model Size | input shape | Box AP<sup>val</sup> | Kirin 990 4xCore(FPS) | download | config | config | post quant model |
|:----------------------------:|:-------:|:-------------:|:----------:| :-------------------: | :----------:| :------------------: | :-------------------: | :------: | :----: | :----: | :--------------: |
98 99
| PP-YOLO tiny                 |    8    |      32       |   4.2MB    |       **1.3M**        |     320     |         20.6         |          92.3         | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_tiny.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_tiny.yml) | [inference model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) |
| PP-YOLO tiny                 |    8    |      32       |   4.2MB    |       **1.3M**        |     416     |         22.7         |          65.4         | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_tiny.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_tiny.yml) | [inference model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) |
K
Kaipeng Deng 已提交
100 101 102 103

**Notes:**

- PP-YOLO-tiny is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
104
- PP-YOLO-tiny used 8 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob//release/2.1/static/docs/FAQ.md).
K
Kaipeng Deng 已提交
105 106 107
- PP-YOLO-tiny inference speed is tested on Kirin 990 with 4 threads by arm8
- we alse provide PP-YOLO-tiny post quant inference model, which can compress model to **1.3MB** with nearly no inference on inference speed and performance

K
Kaipeng Deng 已提交
108 109 110 111 112 113
### PP-YOLO on Pascal VOC

PP-YOLO trained on Pascal VOC dataset as follows:

|       Model        | GPU number | images/GPU |  backbone  | input shape | Box AP50<sup>val</sup> | download | config  |
|:------------------:|:----------:|:----------:|:----------:| :----------:| :--------------------: | :------: | :-----: |
114 115 116
| PP-YOLO            |     8      |      12    | ResNet50vd |     608     |          84.9          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_voc.yml)                   |
| PP-YOLO            |     8      |      12    | ResNet50vd |     416     |          84.3          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_voc.yml)                   |
| PP-YOLO            |     8      |      12    | ResNet50vd |     320     |          82.2          | [model](https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/static/configs/ppyolo/ppyolo_voc.yml)                   |
K
Kaipeng Deng 已提交
117

K
Kaipeng Deng 已提交
118
## Getting Start
K
Kaipeng Deng 已提交
119

K
Kaipeng Deng 已提交
120
### 1. Training
K
Kaipeng Deng 已提交
121

K
Kaipeng Deng 已提交
122
Training PP-YOLO on 8 GPUs with following command(all commands should be run under PaddleDetection root directory as default), use `--eval` to enable alternate evaluation during training.
K
Kaipeng Deng 已提交
123 124 125 126 127

```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python tools/train.py -c configs/ppyolo/ppyolo.yml --eval
```

128 129 130
optional: Run `tools/anchor_cluster.py` to get anchors suitable for your dataset, and modify the anchor setting in `configs/ppyolo/ppyolo.yml`.

``` bash
131
python tools/anchor_cluster.py -c configs/ppyolo/ppyolo.yml -n 9 -s 608 -m v2 -i 1000
132 133
```

K
Kaipeng Deng 已提交
134
### 2. Evaluation
K
Kaipeng Deng 已提交
135

K
Kaipeng Deng 已提交
136
Evaluating PP-YOLO on COCO val2017 dataset in single GPU with following commands:
K
Kaipeng Deng 已提交
137 138

```bash
K
Kaipeng Deng 已提交
139
# use weights released in PaddleDetection model zoo
K
Kaipeng Deng 已提交
140 141
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams

K
Kaipeng Deng 已提交
142
# use saved checkpoint in training
K
Kaipeng Deng 已提交
143 144 145
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo.yml -o weights=output/ppyolo/best_model
```

K
Kaipeng Deng 已提交
146
For evaluation on COCO test-dev2017 dataset, `configs/ppyolo/ppyolo_test.yml` should be used, please download COCO test-dev2017 dataset from [COCO dataset download](https://cocodataset.org/#download) and decompress to pathes configured by `EvalReader.dataset` in `configs/ppyolo/ppyolo_test.yml` and run evaluation by following command:
147 148

```bash
K
Kaipeng Deng 已提交
149
# use weights released in PaddleDetection model zoo
150 151
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams

K
Kaipeng Deng 已提交
152
# use saved checkpoint in training
153 154 155
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=output/ppyolo/best_model
```

K
Kaipeng Deng 已提交
156
Evaluation results will be saved in `bbox.json`, compress it into a `zip` package and upload to [COCO dataset evaluation](https://competitions.codalab.org/competitions/20794#participate) to evaluate.
157

K
Kaipeng Deng 已提交
158
**NOTE:** `configs/ppyolo/ppyolo_test.yml` is only used for evaluation on COCO test-dev2017 dataset, could not be used for training or COCO val2017 dataset evaluating.
159

K
Kaipeng Deng 已提交
160
### 3. Inference
K
Kaipeng Deng 已提交
161

K
Kaipeng Deng 已提交
162
Inference images in single GPU with following commands, use `--infer_img` to inference a single image and `--infer_dir` to inference all images in the directory.
K
Kaipeng Deng 已提交
163 164

```bash
K
Kaipeng Deng 已提交
165
# inference single image
K
Kaipeng Deng 已提交
166 167
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_img=demo/000000014439_640x640.jpg

K
Kaipeng Deng 已提交
168
# inference all images in the directory
K
Kaipeng Deng 已提交
169 170 171
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_dir=demo
```

K
Kaipeng Deng 已提交
172
### 4. Inferece deployment and benchmark
K
Kaipeng Deng 已提交
173

K
Kaipeng Deng 已提交
174
For inference deployment or benchmard, model exported with `tools/export_model.py` should be used and perform inference with Paddle inference library with following commands:
K
Kaipeng Deng 已提交
175 176

```bash
K
Kaipeng Deng 已提交
177
# export model, model will be save in output/ppyolo as default
K
Kaipeng Deng 已提交
178 179
python tools/export_model.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams

K
Kaipeng Deng 已提交
180
# inference with Paddle Inference library
K
Kaipeng Deng 已提交
181 182 183
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True
```

K
Kaipeng Deng 已提交
184
Benchmark testing for PP-YOLO uses model without data reading and post-processing(NMS), export model with `--exclude_nms` to prunce NMS for benchmark testing from mode with following commands:
K
Kaipeng Deng 已提交
185 186

```bash
K
Kaipeng Deng 已提交
187
# export model, --exclude_nms to prune NMS part, model will be save in output/ppyolo as default
K
Kaipeng Deng 已提交
188 189
python tools/export_model.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --exclude_nms

K
Kaipeng Deng 已提交
190
# FP32 benchmark
K
Kaipeng Deng 已提交
191 192
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True

K
Kaipeng Deng 已提交
193
# TensorRT FP16 benchmark
K
Kaipeng Deng 已提交
194 195 196
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True --run_mode=trt_fp16
```

K
Kaipeng Deng 已提交
197
## Future work
K
Kaipeng Deng 已提交
198

K
Kaipeng Deng 已提交
199 200
1. more PP-YOLO tiny model
2. PP-YOLO model with more backbones
K
Kaipeng Deng 已提交
201

K
Kaipeng Deng 已提交
202
## Appendix
K
Kaipeng Deng 已提交
203

K
Kaipeng Deng 已提交
204
Optimizing method and ablation experiments of PP-YOLO compared with YOLOv3.
K
Kaipeng Deng 已提交
205

K
Kaipeng Deng 已提交
206 207 208 209 210 211 212 213 214 215 216
| NO.  |        Model                 | Box AP<sup>val</sup> | Box AP<sup>test</sup> | Params(M) | FLOPs(G) | V100 FP32 FPS |
| :--: | :--------------------------- | :------------------: |:--------------------: | :-------: | :------: | :-----------: |
|  A   | YOLOv3-DarkNet53             |         38.9         |           -           |   59.13   |  65.52   |      58.2     |
|  B   | YOLOv3-ResNet50vd-DCN        |         39.1         |           -           |   43.89   |  44.71   |      79.2     |
|  C   | B + LB + EMA + DropBlock     |         41.4         |           -           |   43.89   |  44.71   |      79.2     |
|  D   | C + IoU Loss                 |         41.9         |           -           |   43.89   |  44.71   |      79.2     |
|  E   | D + IoU Aware                |         42.5         |           -           |   43.90   |  44.71   |      74.9     |
|  F   | E + Grid Sensitive           |         42.8         |           -           |   43.90   |  44.71   |      74.8     |
|  G   | F + Matrix NMS               |         43.5         |           -           |   43.90   |  44.71   |      74.8     |
|  H   | G + CoordConv                |         44.0         |           -           |   43.93   |  44.76   |      74.1     |
|  I   | H + SPP                      |         44.3         |         45.2          |   44.93   |  45.12   |      72.9     |
K
Kaipeng Deng 已提交
217 218
|  J   | I + Better ImageNet Pretrain |         44.8         |         45.2          |   44.93   |  45.12   |      72.9     |
|  K   | J + 2x Scheduler             |         45.3         |         45.9          |   44.93   |  45.12   |      72.9     |
K
Kaipeng Deng 已提交
219

K
Kaipeng Deng 已提交
220
**Notes:**
K
Kaipeng Deng 已提交
221

K
Kaipeng Deng 已提交
222
- Performance and inference spedd are measure with input shape as 608
K
Kaipeng Deng 已提交
223
- All models are trained on COCO train2017 datast and evaluated on val2017 & test-dev2017 dataset,`Box AP` is evaluation results as `mAP(IoU=0.5:0.95)`.
K
Kaipeng Deng 已提交
224 225
- Inference speed is tested on single Tesla V100 with batch size as 1 following test method and environment configuration in benchmark above.
- [YOLOv3-DarkNet53](../yolov3_darknet.yml) with mAP as 38.9 is optimized YOLOv3 model in PaddleDetection,see [Model Zoo](../../docs/MODEL_ZOO.md) for details.