layer_helper.py 5.5 KB
Newer Older
Q
QI JUN 已提交
1
from paddle.v2.framework.framework import Variable, OpProtoHolder, g_program, g_init_program
Y
Yu Yang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
import paddle.v2.framework.core as core
import copy
import itertools


def unique_name(prefix):
    uid = core.unique_integer()  # unique during whole process.
    return "_".join([prefix, str(uid)])


class LayerHelper(object):
    def __init__(self, layer_type, **kwargs):
        self.kwargs = kwargs
        self.layer_type = layer_type
        name = self.kwargs.get('name', None)
        if name is None:
            self.kwargs['name'] = unique_name(self.layer_type)

    @property
    def name(self):
        return self.kwargs['name']

    @property
    def program(self):
        prog = self.kwargs.get('program', None)
        if prog is None:
            return g_program
        else:
            return prog

Q
QI JUN 已提交
32 33 34 35 36 37 38 39
    @property
    def init_program(self):
        prog = self.kwargs.get('init_program', None)
        if prog is None:
            return g_init_program
        else:
            return prog

Y
Yu Yang 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    def append_op(self, *args, **kwargs):
        return self.program.current_block().append_op(*args, **kwargs)

    def multiple_input(self, input_param_name='input'):
        inputs = self.kwargs.get(input_param_name, [])
        type_error = TypeError(
            "Input of {0} layer should be Variable or sequence of Variable".
            format(self.layer_type))
        if isinstance(inputs, Variable):
            inputs = [inputs]
        elif not isinstance(inputs, list) and not isinstance(inputs, tuple):
            raise type_error
        else:
            for each in inputs:
                if not isinstance(each, Variable):
                    raise type_error
        return inputs

    def input(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        if len(inputs) != 1:
            raise "{0} layer only takes one input".format(self.layer_type)
        return inputs[0]

    @property
    def param_attr(self):
        default = {
            'name': None,
            'init_attr': {
                'type': 'uniform_random',
                'min': -1.0,
                'max': 1.0
            }
        }
        actual = self.kwargs.get('param_attr', None)
        return actual if actual is not None else default

Q
QI JUN 已提交
77
    def bias_attr(self):
78 79
        bias_attr = self.kwargs.get('bias_attr', None)
        if bias_attr is True:
Y
Yu Yang 已提交
80 81 82 83
            bias_attr = {
                'name': None,
                'init_attr': {
                    'type': 'fill_constant',
Q
QI JUN 已提交
84
                    'value': 0.0
Y
Yu Yang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
                }
            }
        return bias_attr

    def multiple_param_attr(self, length):
        param_attr = self.param_attr
        if isinstance(param_attr, dict):
            param_attr = [param_attr]

        if len(param_attr) != 1 and len(param_attr) != length:
            raise ValueError("parameter number mismatch")
        elif len(param_attr) == 1 and length != 1:
            tmp = [None] * length
            for i in xrange(length):
                tmp[i] = copy.deepcopy(param_attr[0])
            param_attr = tmp
        return param_attr

    def iter_inputs_and_params(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        param_attrs = self.multiple_param_attr(len(inputs))
        for ipt, param_attr in itertools.izip(inputs, param_attrs):
            yield ipt, param_attr

    def input_dtype(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        dtype = None
        for each in inputs:
            if dtype is None:
                dtype = each.data_type
            elif dtype != each.data_type:
                raise ValueError("Data Type mismatch")
        return dtype

    def create_parameter(self, attr, shape, dtype, suffix='w'):
        if attr['name'] is None:
            attr['name'] = unique_name(".".join([self.name, suffix]))
Q
QI JUN 已提交
122
        self.init_program.global_block().create_parameter(
Y
Yu Yang 已提交
123 124 125
            name=attr['name'],
            dtype=dtype,
            shape=shape,
Q
QI JUN 已提交
126 127 128
            init_attr=attr['init_attr'])
        return self.program.global_block().create_parameter(
            name=attr['name'], dtype=dtype, shape=shape)
Y
Yu Yang 已提交
129 130 131

    def create_tmp_variable(self, dtype):
        return self.program.current_block().create_var(
Q
QI JUN 已提交
132 133 134
            name=unique_name(".".join([self.name, 'tmp'])),
            dtype=dtype,
            persistable=False)
Y
Yu Yang 已提交
135 136

    def create_global_variable(self, *args, **kwargs):
Q
QI JUN 已提交
137 138
        return self.program.global_block().create_var(
            *args, persistable=False, **kwargs)
Y
Yu Yang 已提交
139 140

    def append_bias_op(self, input_var):
141
        size = list(input_var.shape[1:])
Q
QI JUN 已提交
142
        bias_attr = self.bias_attr()
Y
Yu Yang 已提交
143 144
        if not bias_attr:
            return input_var
145

Y
Yu Yang 已提交
146
        b = self.create_parameter(
147
            attr=bias_attr, shape=size, dtype=input_var.data_type, suffix='b')
Y
Yu Yang 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        tmp = self.create_tmp_variable(dtype=input_var.data_type)
        self.append_op(
            type='elementwise_add',
            inputs={'X': [input_var],
                    'Y': [b]},
            outputs={'Out': [tmp]})
        return tmp

    def append_activation(self, input_var):
        act = self.kwargs.get('act', None)
        if act is None:
            return input_var
        if isinstance(act, basestring):
            act = {'type': act}
        tmp = self.create_tmp_variable(dtype=input_var.data_type)
        act_type = act.pop('type')
        self.append_op(
            type=act_type,
            inputs={"X": [input_var]},
            outputs={"Y": [tmp]},
            attrs=act)
        return tmp