jit_kernel_macro.h 8.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <string>
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/platform/enforce.h"
T
tensor-tang 已提交
19 20 21 22 23 24

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {

T
tensor-tang 已提交
25 26 27 28 29 30 31
#define JITKERNEL_DECLARE_STATIC_FUNC                       \
  static inline std::string name(int d) {                   \
    PADDLE_THROW("DType should be either float or double"); \
  }                                                         \
  static inline bool useJIT(int d) { return false; }        \
  static inline bool useMKL(int d) { return false; }

T
tensor-tang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#define JITKERNEL_DEFINE_NAME(ker_key, ker_class)    \
  template <>                                        \
  std::string ker_class##Impl<float>::name(int d) {  \
    std::string key(#ker_key "f");                   \
    if (useJIT(d)) {                                 \
      /* only jit code need record d*/               \
      return key + "jit" + std::to_string(d);        \
    } else if (useMKL(d)) {                          \
      return key + "mkl";                            \
    } else {                                         \
      return key + "any";                            \
    }                                                \
  }                                                  \
  template <>                                        \
  std::string ker_class##Impl<double>::name(int d) { \
    std::string key(#ker_key "d");                   \
    /* jit code do not support double yet*/          \
    if (useMKL(d)) {                                 \
      return key + "mkl";                            \
    } else {                                         \
      return key + "any";                            \
    }                                                \
  }

#define JITKERNEL_DECLARE(ker_class, ker_dtype) \
  template <>                                   \
  std::shared_ptr<const ker_class<ker_dtype>>   \
  KernelPool::Get<ker_class<ker_dtype>, int>(int d)

#define JITKERNEL_FIND_KEY(ker_class, ker_dtype) \
  std::string key = ker_class##Impl<ker_dtype>::name(d)

#define JITKERNEL_IMPL(ker_class, ker_dtype)           \
  p = std::dynamic_pointer_cast<ker_class<ker_dtype>>( \
      std::make_shared<ker_class##Impl<ker_dtype>>(d))

#define REGISTER_JITKERNEL_WITH_DTYPE(ker_class, ker_dtype, marco_declare, \
                                      macro_find_key, macro_impl)          \
  marco_declare(ker_class, ker_dtype) {                                    \
    macro_find_key(ker_class, ker_dtype);                                  \
    if (kers_.find(key) == kers_.end()) {                                  \
      std::shared_ptr<ker_class<ker_dtype>> p;                             \
      macro_impl(ker_class, ker_dtype);                                    \
      kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)});           \
      return p;                                                            \
    }                                                                      \
    return std::dynamic_pointer_cast<const ker_class<ker_dtype>>(          \
        kers_.at(key));                                                    \
  }
T
tensor-tang 已提交
81

T
tensor-tang 已提交
82 83 84
#define REGISTER_JITKERNEL_ARGS(ker_key, ker_class, marco_define_name,     \
                                marco_declare, macro_find_key, macro_impl) \
  marco_define_name(ker_key, ker_class);                                   \
85 86 87 88
  REGISTER_JITKERNEL_WITH_DTYPE(ker_class, float, marco_declare,           \
                                macro_find_key, macro_impl);               \
  REGISTER_JITKERNEL_WITH_DTYPE(ker_class, double, marco_declare,          \
                                macro_find_key, macro_impl)
T
tensor-tang 已提交
89 90 91 92 93 94 95

#define REGISTER_JITKERNEL(ker_key, ker_class)                       \
  REGISTER_JITKERNEL_ARGS(ker_key, ker_class, JITKERNEL_DEFINE_NAME, \
                          JITKERNEL_DECLARE, JITKERNEL_FIND_KEY,     \
                          JITKERNEL_IMPL)

// TODO(TJ): below defines are deprecated, would be remove recently
96 97 98 99 100 101 102 103 104 105 106
#define SEARCH_BLOCK(macro_, ker, dtype, isa)              \
  if (d < YMM_FLOAT_BLOCK) {                               \
    macro_(ker, dtype, isa, kLT8);                         \
  } else if (d == YMM_FLOAT_BLOCK) {                       \
    macro_(ker, dtype, isa, kEQ8);                         \
  } else if (d > YMM_FLOAT_BLOCK && d < ZMM_FLOAT_BLOCK) { \
    macro_(ker, dtype, isa, kGT8LT16);                     \
  } else if (d == ZMM_FLOAT_BLOCK) {                       \
    macro_(ker, dtype, isa, kEQ16);                        \
  } else {                                                 \
    macro_(ker, dtype, isa, kGT16);                        \
T
tensor-tang 已提交
107 108
  }

T
tensor-tang 已提交
109 110 111 112 113 114 115 116 117
#define SEARCH_ISA_BLOCK(macro_, ker, dtype)             \
  if (platform::MayIUse(platform::avx512f)) {            \
    SEARCH_BLOCK(macro_, ker, dtype, platform::avx512f); \
  } else if (platform::MayIUse(platform::avx2)) {        \
    SEARCH_BLOCK(macro_, ker, dtype, platform::avx2);    \
  } else if (platform::MayIUse(platform::avx)) {         \
    SEARCH_BLOCK(macro_, ker, dtype, platform::avx);     \
  } else {                                               \
    SEARCH_BLOCK(macro_, ker, dtype, platform::isa_any); \
T
tensor-tang 已提交
118 119
  }

T
tensor-tang 已提交
120 121 122
#define JITKERNEL_KEY(ker_key, dtype_key) \
  #ker_key #dtype_key + std::to_string(d)

T
tensor-tang 已提交
123 124
#define JITKERNEL_NEW_IMPL_DEPRECATED(ker, dtype, isa, k) \
  p = std::dynamic_pointer_cast<ker<dtype>>(              \
T
tensor-tang 已提交
125
      std::make_shared<ker##Impl<dtype, isa, k>>(d))
T
tensor-tang 已提交
126

T
tensor-tang 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139
#define JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, ker_dtype,       \
                                        dtype_key, marco_declare, macro_key, \
                                        macro_impl)                          \
  marco_declare(ker_class, ker_dtype) {                                      \
    std::string key = macro_key(ker_key, dtype_key);                         \
    if (kers_.find(key) == kers_.end()) {                                    \
      std::shared_ptr<ker_class<ker_dtype>> p;                               \
      SEARCH_ISA_BLOCK(macro_impl, ker_class, ker_dtype);                    \
      kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)});             \
      return p;                                                              \
    }                                                                        \
    return std::dynamic_pointer_cast<const ker_class<ker_dtype>>(            \
        kers_.at(key));                                                      \
T
tensor-tang 已提交
140 141
  }

T
tensor-tang 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155
#define REGISTER_JITKERNEL_DEPRECATED(ker_key, ker_class)           \
  JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, float, f,     \
                                  JITKERNEL_DECLARE, JITKERNEL_KEY, \
                                  JITKERNEL_NEW_IMPL_DEPRECATED);   \
  JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, double, d,    \
                                  JITKERNEL_DECLARE, JITKERNEL_KEY, \
                                  JITKERNEL_NEW_IMPL_DEPRECATED)

#define REGISTER_JITKERNEL_ARGS_DEPRECATED(ker_key, ker_class, marco_declare,  \
                                           macro_key, macro_impl)              \
  JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, float, f, marco_declare, \
                                  macro_key, macro_impl);                      \
  JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, double, d,               \
                                  marco_declare, macro_key, macro_impl)
T
tensor-tang 已提交
156 157

#define FOR_EACH_ISA(macro_, block) \
T
tensor-tang 已提交
158 159 160 161
  macro_(platform::avx512f, block); \
  macro_(platform::avx2, block);    \
  macro_(platform::avx, block);     \
  macro_(platform::isa_any, block)
T
tensor-tang 已提交
162 163 164 165 166 167 168 169

#define FOR_EACH_BLOCK(macro_, isa) \
  macro_(isa, kLT8);                \
  macro_(isa, kEQ8);                \
  macro_(isa, kGT8LT16);            \
  macro_(isa, kEQ16);               \
  macro_(isa, kGT16)

T
tensor-tang 已提交
170 171 172 173 174
#define FOR_EACH_ISA_BLOCK(macro_)           \
  FOR_EACH_BLOCK(macro_, platform::avx512f); \
  FOR_EACH_BLOCK(macro_, platform::avx2);    \
  FOR_EACH_BLOCK(macro_, platform::avx);     \
  FOR_EACH_BLOCK(macro_, platform::isa_any)
T
tensor-tang 已提交
175 176 177 178 179

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle