test_word2vec.py 4.4 KB
Newer Older
Q
QI JUN 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
import paddle.v2 as paddle
import paddle.v2.framework.layers as layers
import paddle.v2.framework.core as core
import paddle.v2.framework.optimizer as optimizer

from paddle.v2.framework.framework import Program, g_program
from paddle.v2.framework.executor import Executor

import numpy as np

init_program = Program()
program = Program()

embed_size = 32
hidden_size = 256
N = 5
batch_size = 32

word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)

first_word = layers.data(
    name='firstw',
    shape=[1],
    data_type='int32',
    program=program,
    init_program=init_program)
second_word = layers.data(
    name='secondw',
    shape=[1],
    data_type='int32',
    program=program,
    init_program=init_program)
third_word = layers.data(
    name='thirdw',
    shape=[1],
    data_type='int32',
    program=program,
    init_program=init_program)
forth_word = layers.data(
    name='forthw',
    shape=[1],
    data_type='int32',
    program=program,
    init_program=init_program)
next_word = layers.data(
    name='nextw',
    shape=[1],
    data_type='int32',
    program=program,
    init_program=init_program)

embed_first = layers.embedding(
    input=first_word,
    size=[dict_size, embed_size],
    data_type='float32',
Y
Yu Yang 已提交
57
    param_attr={'name': 'shared_w'},
Q
QI JUN 已提交
58 59 60 61 62 63
    program=program,
    init_program=init_program)
embed_second = layers.embedding(
    input=second_word,
    size=[dict_size, embed_size],
    data_type='float32',
Y
Yu Yang 已提交
64
    param_attr={'name': 'shared_w'},
Q
QI JUN 已提交
65 66 67 68 69 70 71
    program=program,
    init_program=init_program)

embed_third = layers.embedding(
    input=third_word,
    size=[dict_size, embed_size],
    data_type='float32',
Y
Yu Yang 已提交
72
    param_attr={'name': 'shared_w'},
Q
QI JUN 已提交
73 74 75 76 77 78
    program=program,
    init_program=init_program)
embed_forth = layers.embedding(
    input=forth_word,
    size=[dict_size, embed_size],
    data_type='float32',
Y
Yu Yang 已提交
79
    param_attr={'name': 'shared_w'},
Q
QI JUN 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    program=program,
    init_program=init_program)

concat_embed = layers.concat(
    input=[embed_first, embed_second, embed_third, embed_forth],
    axis=1,
    program=program,
    init_program=init_program)

hidden1 = layers.fc(input=concat_embed,
                    size=hidden_size,
                    act='sigmoid',
                    program=program,
                    init_program=init_program)
predict_word = layers.fc(input=hidden1,
                         size=dict_size,
                         act='softmax',
                         program=program,
                         init_program=init_program)
cost = layers.cross_entropy(
    input=predict_word,
    label=next_word,
    program=program,
    init_program=init_program)
avg_cost = layers.mean(x=cost, program=program, init_program=init_program)

sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
opts = sgd_optimizer.minimize(avg_cost)

train_reader = paddle.batch(
    paddle.dataset.imikolov.train(word_dict, N), batch_size)

place = core.CPUPlace()
exe = Executor(place)

exe.run(init_program, feed={}, fetch_list=[])
PASS_NUM = 100
for pass_id in range(PASS_NUM):
    for data in train_reader():
        input_data = [[data_idx[idx] for data_idx in data] for idx in xrange(5)]
        input_data = map(lambda x: np.array(x).astype("int32"), input_data)
        input_data = map(lambda x: np.expand_dims(x, axis=1), input_data)

        first_data = input_data[0]
        first_tensor = core.LoDTensor()
        first_tensor.set(first_data, place)

        second_data = input_data[0]
        second_tensor = core.LoDTensor()
        second_tensor.set(second_data, place)

        third_data = input_data[0]
        third_tensor = core.LoDTensor()
        third_tensor.set(third_data, place)

        forth_data = input_data[0]
        forth_tensor = core.LoDTensor()
        forth_tensor.set(forth_data, place)

        next_data = input_data[0]
        next_tensor = core.LoDTensor()
        next_tensor.set(next_data, place)

        outs = exe.run(program,
                       feed={
                           'firstw': first_tensor,
                           'secondw': second_tensor,
                           'thirdw': third_tensor,
                           'forthw': forth_tensor,
                           'nextw': next_tensor
                       },
                       fetch_list=[avg_cost])
        out = np.array(outs[0])
        if out[0] < 10.0:
            exit(0)  # if avg cost less than 10.0, we think our code is good.
exit(1)