test_lstm_cudnn_op.py 6.5 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid

SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0


def lstm_naive(
        input,
        w, ):
    seq_len, batch_size, hidden_size = input.shape

    offset = 0
    wi = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size
    wf = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size
    wc = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size
    wo = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size
    ri = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size
    rf = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size
    rc = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size
    ro = w[offset:offset + hidden_size * hidden_size].reshape(
        (hidden_size, hidden_size)).transpose()
    offset += hidden_size * hidden_size

    bi_1 = w[offset:offset + hidden_size]
    offset += hidden_size
    bf_1 = w[offset:offset + hidden_size]
    offset += hidden_size
    bc_1 = w[offset:offset + hidden_size]
    offset += hidden_size
    bo_1 = w[offset:offset + hidden_size]
    offset += hidden_size

    bi_2 = w[offset:offset + hidden_size]
    offset += hidden_size
    bf_2 = w[offset:offset + hidden_size]
    offset += hidden_size
    bc_2 = w[offset:offset + hidden_size]
    offset += hidden_size
    bo_2 = w[offset:offset + hidden_size]

    def sigmoid(x):
        y = np.copy(x)
        y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
        y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
        return 1. / (1. + np.exp(-y))

    def tanh(x):
        y = -2. * x
        y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
        return (2. / (1. + np.exp(y))) - 1.

    output = []
    pre_h = np.zeros((batch_size, hidden_size), dtype=input.dtype)
    pre_c = np.zeros((batch_size, hidden_size), dtype=input.dtype)

    for i in range(seq_len):
        emb_1 = input[i]

        input_gate = sigmoid(
            np.matmul(emb_1, wi) + np.matmul(pre_h, ri) + bi_1 + bi_2)
        forget_gate = sigmoid(
            np.matmul(emb_1, wf) + np.matmul(pre_h, rf) + bf_1 + bf_2)
        output_gate = sigmoid(
            np.matmul(emb_1, wo) + np.matmul(pre_h, ro) + bo_1 + bo_2)
        c_t_temp = tanh(
            np.matmul(emb_1, wc) + np.matmul(pre_h, rc) + bc_1 + bc_2)
        new_c = input_gate * c_t_temp + forget_gate * pre_c
        new_h = output_gate * tanh(new_c)

        pre_h = new_h
        pre_c = new_c

        output.append(new_h)

    output = np.concatenate(output, -1)
    output = output.reshape((batch_size, -1, hidden_size))

    output = output.transpose((1, 0, 2))

    return output, pre_h, pre_c


class TestCUDNNLstmOp(OpTest):
    def setUp(self):
        self.op_type = "cudnn_lstm"
        self.dtype = np.float32

        num_steps = 20
        batch_size = 5
        hidden_size = 20

        input_weight_size = (hidden_size * hidden_size) * 4
        hidden_weight_size = (hidden_size * hidden_size) * 4
        weight_size = input_weight_size + hidden_weight_size
        weight_size += hidden_size * 8

        input = np.random.uniform(
            low=-0.1, high=0.1, size=(num_steps, batch_size,
                                      hidden_size)).astype(self.dtype)
        flat_w = np.random.uniform(
            low=-0.1, high=0.1, size=(weight_size)).astype(self.dtype)

        output, last_hidden, last_cell = lstm_naive(input, flat_w)

        init_h = np.zeros((batch_size, hidden_size), dtype=np.float32)
        init_c = np.zeros((batch_size, hidden_size), dtype=np.float32)
        scope = core.Scope()
        program = fluid.Program()
        block = program.global_block()

        cache_temp = block.create_var(
            name="Cache",
            persistable=True,
            type=core.VarDesc.VarType.RAW,
            stop_gradient=True)
        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'W': OpTest.np_dtype_to_fluid_dtype(flat_w),
            'InitH': OpTest.np_dtype_to_fluid_dtype(init_h),
            'InitC': OpTest.np_dtype_to_fluid_dtype(init_c),
        }
        self.cache_name_list = ['Cache']
        self.attrs = {
            'max_len': num_steps,
            'dropout_prob': 0.0,
            'is_bidirec': False,
            'input_size': hidden_size,
            'hidden_size': hidden_size,
            'num_layers': 1,
        }
        self.outputs = {
            'Out': output,
            "last_h": last_hidden,
            'last_c': last_cell
        }

    def test_output_with_place(self):
        if self.testcuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)

    def test_grad_with_place(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place,
                set(['Input', 'W', 'InitH', 'InitC']),
                ['Out', 'last_h', 'last_c'],
                max_relative_error=0.02)

    def testcuda(self):
        return core.is_compiled_with_cuda()


if __name__ == '__main__':
    unittest.main()