analysis_predictor.cc 27.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20 21
#include <string>
#include <vector>
22
#include "paddle/fluid/framework/feed_fetch_method.h"
23
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
24
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
25
#include "paddle/fluid/framework/ir/pass.h"
26
#include "paddle/fluid/framework/naive_executor.h"
27
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
28
#include "paddle/fluid/framework/var_type_traits.h"
29
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
31
#include "paddle/fluid/inference/api/helper.h"
32
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
33
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
34
#include "paddle/fluid/inference/utils/singleton.h"
35
#include "paddle/fluid/memory/memcpy.h"
36
#include "paddle/fluid/platform/cpu_helper.h"
37
#include "paddle/fluid/platform/gpu_info.h"
T
tensor-tang 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

Y
Yan Chunwei 已提交
40 41
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
42
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
N
nhzlx 已提交
43

Y
Yan Chunwei 已提交
44 45
#endif

T
tensor-tang 已提交
46
DECLARE_bool(profile);
47 48 49

namespace paddle {

N
nhzlx 已提交
50
using inference::Singleton;
N
nhzlx 已提交
51
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
52
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
53 54
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
55
#endif
56

57 58 59 60
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
61 62
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
63 64 65 66 67 68
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
69
bool AnalysisPredictor::Init(
70 71
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
72
  VLOG(3) << "Predictor::init()";
T
tensor-tang 已提交
73 74 75
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";
76 77
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
78 79 80
    platform::EnableProfiler(tracking_device);
  }

81
  // no matter with or without MKLDNN
L
luotao1 已提交
82
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
83

84 85 86 87 88 89 90 91 92 93 94 95 96
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
97
  }
98 99 100 101 102 103 104 105 106

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
107
  if (parent_scope) {
108 109 110
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
111
    scope_ = parent_scope;
112
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
113 114 115
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
116
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
117
  }
118 119 120 121 122
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
123 124
  if (!program) {
    if (!LoadProgramDesc()) return false;
125

126 127 128 129 130 131 132 133 134
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

135 136 137
    // Optimize the program, and load parameters and modify them in the
    // scope_.
    // This will change the scope_ address.
138
    if (config_.ir_optim()) {
139 140 141 142 143 144 145
      status_ir_optim_enabled_ = true;
      OptimizeInferenceProgram();
    } else {
      // Load parameters
      LOG(INFO) << "load parameters ";
      LoadParameters();
    }
Y
Yan Chunwei 已提交
146
  } else {
147 148
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
149 150
    inference_program_ = program;
  }
M
Michal Gallus 已提交
151

152 153 154 155 156
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
157
  if (config_.use_gpu_) {
158
    status_use_gpu_ = true;
159
    place_ = paddle::platform::CUDAPlace(config_.device_id_);
160 161 162 163 164 165 166 167
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
168
                     config_.use_feed_fetch_ops_);
169

170
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
171

172 173 174
  return true;
}

L
luotao1 已提交
175
void AnalysisPredictor::SetMkldnnThreadID(int tid) {
L
luotao1 已提交
176 177 178 179 180 181 182
#ifdef PADDLE_WITH_MKLDNN
  platform::set_cur_thread_id(tid);
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
#endif
}

183 184 185
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
L
luotao1 已提交
186 187 188
  if (UNLIKELY(config_.cpu_math_library_num_threads() > 1)) {
    paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
  }
M
minqiyang 已提交
189
  VLOG(3) << "Predictor::predict";
190 191 192 193 194 195
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
196
    return false;
197
  }
M
Michal Gallus 已提交
198

199 200 201
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
202

203 204 205 206
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
207
  }
Y
Yan Chunwei 已提交
208 209 210 211 212 213

  // Collect variable shapes for memory optimization.
  if (need_collect_var_shapes_for_memory_optim()) {
    CollectVarShapes();
  }

M
minqiyang 已提交
214
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
215

Y
Yan Chunwei 已提交
216 217 218 219 220 221 222
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  tensor_array_batch_cleaner_.ResetNoTensorVars();
223 224
  return true;
}
225

226 227
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
228
  VLOG(3) << "Predictor::set_feed";
229 230 231 232 233 234 235 236 237 238 239 240 241 242
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
243
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
244
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
245
      input_ptr = input.mutable_data<float>(ddim, place_);
246 247 248 249 250
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

251 252 253 254 255 256
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
257 258 259 260
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
261 262 263
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
264
                   inputs[i].data.length(), dev_ctx->stream());
265 266 267 268
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
269 270 271 272 273 274 275
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
276
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
277 278
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
279 280
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
281 282
      }
      idx = feed_names_[name];
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
313
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
314 315 316
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    int idx = boost::get<int>(fetches_[i]->GetAttr("col"));
317 318 319 320 321
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
322
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
323
    if (type == framework::proto::VarType::FP32) {
324 325
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
326
    } else if (type == framework::proto::VarType::INT64) {
327 328 329 330 331 332
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
    } else {
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
    }
  }
Y
Yan Chunwei 已提交
333 334
  return true;
}
335

336
// NOTE All the members in AnalysisConfig should be copied to Argument.
Y
Yan Chunwei 已提交
337
void AnalysisPredictor::OptimizeInferenceProgram() {
338 339
  status_program_optimized_ = true;

340 341
  argument_.SetUseGPU(config_.use_gpu());
  argument_.SetGPUDeviceId(config_.gpu_device_id());
Y
Yan Chunwei 已提交
342
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
Y
Yan Chunwei 已提交
343 344 345
  argument_.SetStaticMemoryOptim(config_.static_memory_optim_);
  argument_.SetStaticMemoryOptimForceUpdate(
      config_.static_memory_optim_force_update_);
T
Tao Luo 已提交
346
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
347
  // Analyze inference_program
348 349
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
350 351
  } else {
    PADDLE_ENFORCE(
352
        !config_.params_file().empty(),
T
Tao Luo 已提交
353
        "Either model_dir or (param_file, prog_file) should be set.");
354
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
355
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
356

357 358
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
359
  }
360

361
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
362
    LOG(INFO) << "TensorRT subgraph engine is enabled";
363 364 365
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
366
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
367
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
W
Wojciech Uss 已提交
368
  }
369

370
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
371
    LOG(INFO) << "MKLDNN is enabled";
372 373 374
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

375
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
376 377 378 379
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
380
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
381
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
382
  argument_.SetScopeNotOwned(scope_.get());
383 384 385 386 387
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
388
  inference_program_.reset(
389
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
390
  LOG(INFO) << "== optimize end ==";
Y
Yan Chunwei 已提交
391
}
392 393

template <>
394 395
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
M
minqiyang 已提交
396
  VLOG(3) << "create AnalysisConfig";
397
  if (config.use_gpu()) {
S
Sylwester Fraczek 已提交
398
    // 1. GPU memory
399 400 401
    PADDLE_ENFORCE_GT(config.memory_pool_init_size_mb(), 0.f);
    PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
                      config.gpu_device_id());
402
    std::vector<std::string> flags;
403 404 405 406 407 408 409 410 411 412 413

    float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
    if (fraction_of_gpu_memory > 0.95f) {
      LOG(ERROR)
          << "Allocate too much memory for the GPU memory pool, assigned "
          << config.memory_pool_init_size_mb() << " MB";
      LOG(ERROR)
          << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
    }

    if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
414 415
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
416
                         std::to_string(fraction_of_gpu_memory);
417
      flags.push_back(flag);
M
minqiyang 已提交
418
      VLOG(3) << "set flag: " << flag;
419 420 421 422 423
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
424
  if (!dynamic_cast<AnalysisPredictor *>(predictor.get())->Init(nullptr)) {
425 426
    return nullptr;
  }
G
Gabor Buella 已提交
427
  return predictor;
428 429
}

430
void AnalysisPredictor::PrepareFeedFetch() {
431 432
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
433 434 435 436 437 438 439 440
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
441
      idx2feeds_[idx] = op->Output("Out")[0];
442 443
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
Y
Yan Chunwei 已提交
444 445
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
446
      }
Y
Yan Chunwei 已提交
447
      fetches_[idx] = op;
N
nhzlx 已提交
448
      idx2fetches_[idx] = op->Input("X")[0];
449 450 451 452
    }
  }
}

453 454 455 456 457 458 459 460
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

N
nhzlx 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

477 478 479 480 481 482 483
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
484 485 486 487 488 489 490
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

491 492 493 494 495 496 497 498 499 500
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
501 502 503 504 505 506
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
507 508 509 510 511
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
  executor_->Run();
Y
Yan Chunwei 已提交
512
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
513
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
514
  tensor_array_batch_cleaner_.ResetTensorArray();
515 516 517 518 519
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
520
  std::string filename;
521 522 523
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
524 525 526
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
527
    filename = config_.prog_file();
528
  } else {
529
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
530 531 532 533
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
534
    LOG(ERROR) << string::Sprintf(
535 536
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
537 538
    return false;
  }
539 540 541

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
542
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
543 544 545
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
546 547
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
548 549 550 551 552 553 554 555
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
556
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
557
  }
558 559 560 561 562 563 564
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
565

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

586
      if (!config_.params_file().empty()) {
587 588 589 590 591 592
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
593
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
594 595 596 597 598
        op->CheckAttrs();
      }
    }
  }

599
  if (!config_.params_file().empty()) {
600 601 602 603 604 605
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
606
    op->SetAttr("file_path", {config_.params_file()});
607 608 609 610
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
611
  framework::NaiveExecutor e(place_);
612 613 614 615
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

616 617
  return true;
}
618

N
nhzlx 已提交
619
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
620 621 622 623 624 625 626 627
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
          boost::get<std::string>(op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
628
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
629 630 631 632
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
633 634
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
635
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
636
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
637 638
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
639 640 641
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
642

N
nhzlx 已提交
643
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
644 645 646
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
647

N
nhzlx 已提交
648 649 650 651 652
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
653
      std::string calibration_table_data_path =
N
nhzlx 已提交
654 655 656 657
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
658 659 660 661 662

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
663 664 665 666
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
667
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
668 669
  return true;
}
N
nhzlx 已提交
670
#endif
N
nhzlx 已提交
671

672
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
673
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
674
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
675 676
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
677 678
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
679
#endif
680 681 682 683 684 685 686
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
687 688 689 690 691 692 693

  // TODO(Superjomn) deduce the directory path.
  std::string out_path = inference::analysis::GetMemoryCachePath(
      config_.model_dir(), config_.prog_file());
  if (need_collect_var_shapes_for_memory_optim()) {
    SerializeBatchVarShapes(out_path);
  }
694 695
}

696
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
697
  std::lock_guard<std::mutex> lk(clone_mutex_);
698 699 700 701 702
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

Y
Yan Chunwei 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
void AnalysisPredictor::CollectVarShapes() {
  VLOG(4) << "Collecting var shapes";
  if (batch_var_shapes_.size() >= max_shape_collect_count_) return;
  std::map<std::string, std::vector<int>> var_shapes;
  for (auto var_name : inference_program_->Block(0).LocalVarNames()) {
    auto *var = sub_scope_->FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(var);
    if (var->Type() == framework::VarTypeTrait<framework::LoDTensor>::kId ||
        var->Type() == framework::VarTypeTrait<framework::Tensor>::kId) {
      auto &tensor = var->Get<framework::LoDTensor>();
      auto shape = framework::vectorize(tensor.dims());
      var_shapes[var_name].assign(shape.begin(), shape.end());
    }
  }
  batch_var_shapes_.push_back(var_shapes);
  LOG_FIRST_N(INFO, 1) << "Collected " << batch_var_shapes_.size()
                       << " batch of var shapes for analysis";
}

void AnalysisPredictor::SerializeBatchVarShapes(const std::string &path) {
  LOG(INFO) << "serialize batch var shapes to " << path;
  std::ofstream file(path);
  if (!file.is_open()) {
    LOG(ERROR) << "failed to serialize the var shapes to " << path;
    return;
  }

  // The sirialized data format:
  // <tensor_name>:dim0,dim1,dim2,;
  for (auto &batch : batch_var_shapes_) {
    for (auto &ele : batch) {
      file << ele.first << ":";
      for (size_t i = 0; i < ele.second.size() - 1; i++) {
        file << ele.second[i] << ",";
      }
      file << ele.second.back() << ";";
    }
    file << "\n";
  }
}

bool AnalysisPredictor::need_collect_var_shapes_for_memory_optim() {
  if (need_collect_var_shapes_ >= 0) return need_collect_var_shapes_;
  bool need = false;
  // check if the cache exists
  if (!config_.enable_memory_optim()) {
    need = false;
Y
Yan Chunwei 已提交
750
  } else if (config_.static_memory_optim_ &&
Y
Yan Chunwei 已提交
751 752 753
             !inference::IsFileExists(inference::analysis::GetMemoryCachePath(
                 config_.model_dir(), config_.prog_file()))) {
    need = true;
Y
Yan Chunwei 已提交
754 755
  } else if (config_.static_memory_optim_ &&
             config_.static_memory_optim_force_update_) {
Y
Yan Chunwei 已提交
756 757 758 759 760 761 762
    need = true;
  }

  need_collect_var_shapes_ = need ? 1 : 0;
  return need;
}

763
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
764 765 766
  return inference_program_->Proto()->SerializeAsString();
}

Y
Yan Chunwei 已提交
767
template <>
768 769 770 771
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
772 773
}

774
}  // namespace paddle
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
797
USE_TRT_CONVERTER(split);
798 799
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
800
USE_TRT_CONVERTER(leaky_relu);
801
#endif