cos_sim_op.cc 6.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/cos_sim_op.h"
X
Xinghai Sun 已提交
16 17 18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

using framework::Tensor;

class CosSimOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
27
    // notnull check
Q
Qiao Longfei 已提交
28 29 30 31 32 33 34 35 36 37
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of CosSimOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of CosSimOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of CosSimOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("XNorm"),
                   "Output(XNorm) of CosSimOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("YNorm"),
                   "Output(YNorm) of CosSimOp should not be null.");
38 39

    // shape check
Q
Qiao Longfei 已提交
40 41
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (framework::product(x_dims) <= 0 || framework::product(y_dims) <= 0)) {
      check = false;
    }

    if (check) {
      PADDLE_ENFORCE_EQ(x_dims.size(), y_dims.size(),
                        "Ranks of Input(X) and Input(Y) must be equal.");
      PADDLE_ENFORCE_GE(x_dims.size(), 2,
                        "Rank of Input(X) must not be less than 2.");
      PADDLE_ENFORCE_EQ(
          framework::slice_ddim(x_dims, 1, x_dims.size()),
          framework::slice_ddim(y_dims, 1, y_dims.size()),
          "All dimensions except the 1st of Input(X) and Input(Y) "
          "must be equal.");
      PADDLE_ENFORCE(
          x_dims[0] == y_dims[0] || y_dims[0] == 1,
          "The 1st dimension of Input(Y) must be equal to Input(X) or"
          " just 1 (which will be broadcasted to match Input(X)).");
    }
64 65

    // resize tensor
Q
Qiao Longfei 已提交
66 67 68 69
    ctx->SetOutputDim("Out", {x_dims[0], 1});
    ctx->SetOutputDim("XNorm", {x_dims[0], 1});
    ctx->SetOutputDim("YNorm", {y_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Out");
X
Xinghai Sun 已提交
70 71 72 73 74
  }
};

class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
75
  void Make() override {
76 77
    AddInput("X", "The 1st input of cos_sim op.");
    AddInput("Y", "The 2nd input of cos_sim op.");
X
Xinghai Sun 已提交
78
    AddOutput("Out", "The output of cos_sim op.");
79 80 81 82 83 84 85 86
    AddOutput("XNorm",
              "Norm of the first input, reduced along the 1st "
              "dimension.")
        .AsIntermediate();
    AddOutput("YNorm",
              "Norm of the second input, reduced along the 1st "
              "dimension.")
        .AsIntermediate();
L
luotao1 已提交
87 88 89
    AddAttr<bool>(framework::kAllKernelsMustComputeRuntimeShape,
                  "Skip calling InferShape() function in the runtime.")
        .SetDefault(true);
90

X
Xinghai Sun 已提交
91
    AddComment(R"DOC(
Y
yi.wu 已提交
92
**Cosine Similarity Operator**
X
Xinghai Sun 已提交
93

Y
yi.wu 已提交
94
$Out = \frac{X^T * Y}{(\sqrt{X^T * X} * \sqrt{Y^T * Y})}$
95

K
Kexin Zhao 已提交
96 97 98
The input X and Y must have the same shape, except that the 1st dimension
of input Y could be just 1 (different from input X), which will be
broadcasted to match the shape of input X before computing their cosine
99
similarity.
100

K
Kexin Zhao 已提交
101 102 103
Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.

X
Xinghai Sun 已提交
104 105 106 107 108 109 110 111
)DOC");
  }
};

class CosSimOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

112
  void InferShape(framework::InferShapeContext* ctx) const override {
113
    // notnull check
Q
Qiao Longfei 已提交
114 115 116 117 118 119 120
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("XNorm"), "Input(XNorm) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("YNorm"), "Input(YNorm) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) must not be null.");
X
Xinghai Sun 已提交
121

122
    // shape check
Q
Qiao Longfei 已提交
123 124 125 126 127 128
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto xnorm_dims = ctx->GetInputDim("XNorm");
    auto ynorm_dims = ctx->GetInputDim("YNorm");
    auto out_dims = ctx->GetInputDim("Out");
    auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));
129 130 131 132 133 134 135 136 137 138 139 140

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                      "Ranks of Input(X) and Input(Y) must be equal.");
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "Rank of Input(X) must not be less than 2.");
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
                      framework::slice_ddim(y_dims, 1, y_dims.size()),
                      "All dimensions except the 1st of Input(X) and Input(Y) "
                      "must be equal.");
    PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
                   "The 1st dimension of Input(Y) must be equal to Input(X) or"
                   " just 1 (which will be broadcasted to match Input(X)).");
141 142 143 144
    auto target_xnorm_dims = framework::make_ddim({x_dims[0], 1});
    auto target_ynorm_dims = framework::make_ddim({y_dims[0], 1});
    PADDLE_ENFORCE_EQ(xnorm_dims, target_xnorm_dims,
                      "Shape of Input(XNorm) must be [X.Dim(0), 1].");
145 146 147 148 149
    PADDLE_ENFORCE_EQ(ynorm_dims, target_ynorm_dims,
                      "Shape of Input(YNorm) must be [Y.Dim(0), 1].");
    PADDLE_ENFORCE_EQ(out_dims, target_xnorm_dims,
                      "Shape of Input(Out) must be [X.Dim(0), 1].");
    PADDLE_ENFORCE_EQ(out_grad_dims, target_xnorm_dims,
150 151 152
                      "Shape of Input(Out@Grad) must be [X.Dim(0), 1].");

    // resize tensor
Q
Qiao Longfei 已提交
153 154 155 156 157 158 159 160
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
X
Xinghai Sun 已提交
161 162 163 164 165 166 167
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
168
REGISTER_OPERATOR(cos_sim, ops::CosSimOp, ops::CosSimOpMaker,
169 170
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(cos_sim_grad, ops::CosSimOpGrad);
X
Xinghai Sun 已提交
171
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
172 173 174 175
    cos_sim, ops::CosSimKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    cos_sim_grad,
    ops::CosSimGradKernel<paddle::platform::CPUDeviceContext, float>);