logical_op.cc 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/controlflow/logical_op.h"
16
#include <string>
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18 19 20 21 22 23

namespace paddle {
namespace operators {
template <typename OpComment>
class BinaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
24
  void Make() override {
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    OpComment comment;
    AddInput("X",
             string::Sprintf("(LoDTensor) Left hand operand of %s operator",
                             comment.type));
    AddInput("Y",
             string::Sprintf("(LoDTensor) Right hand operand of %s operator",
                             comment.type));
    AddOutput("Out", string::Sprintf(
                         "(LoDTensor) n-dim bool tensor. Each element is %s",
                         comment.equation));
    AddComment(string::Sprintf(R"DOC(%s Operator

It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean tensors.
Each element of Out is calculated by %s
)DOC",
                               comment.type, comment.equation));
  }
};

template <typename OpComment>
class UnaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
47
  void Make() override {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    OpComment comment;
    AddInput("X", string::Sprintf("(LoDTensor) Operand of %s operator",
                                  comment.type));
    AddOutput("Out", string::Sprintf(
                         "(LoDTensor) n-dim bool tensor. Each element is %s",
                         comment.equation));
    AddComment(string::Sprintf(R"DOC(%s Operator

It operates element-wise on X, and returns the Out. X and Out are N-dim boolean tensors.
Each element of Out is calculated by %s
)DOC",
                               comment.type, comment.equation));
  }
};

template <typename OpComment>
class BinaryLogicalOpInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    OpComment comment;
    PADDLE_ENFORCE(context->HasInput("X"),
                   "Input(X) of %s operator must not be null", comment.type);
    PADDLE_ENFORCE(context->HasInput("Y"),
                   "Input(Y) of %s operator must not be null", comment.type);
    auto dim_x = context->GetInputDim("X");
    auto dim_y = context->GetInputDim("Y");
S
superjomn 已提交
74 75 76

    int product_x = framework::product(dim_x);
    int product_y = framework::product(dim_y);
Y
Yan Chunwei 已提交
77
    bool check = ctx->IsRuntime() || (product_x >= 0 && product_y >= 0);
S
superjomn 已提交
78
    if (check) {
S
up  
superjomn 已提交
79 80 81 82
      PADDLE_ENFORCE_EQ(
          product_x, product_y,
          "The number of elements in X and Y should be same, %d != %d",
          product_x, product_y);
S
superjomn 已提交
83
    }
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

    context->SetOutputDim("Out", context->GetInputDim("X"));
    context->ShareLoD("X", "Out");
  }
};

template <typename OpComment>
class UnaryLogicalOpInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    OpComment comment;
    PADDLE_ENFORCE(context->HasInput("X"),
                   "Input(X) of %s operator must not be null", comment.type);
    context->SetOutputDim("Out", context->GetInputDim("X"));
    context->ShareLoD("X", "Out");
  }
};

class LogicalOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
107
  framework::OpKernelType GetExpectedKernelType(
108
      const framework::ExecutionContext &ctx) const override {
109
    framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx);
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    // LogicalOp kernel's device type is decided by input tensor place
    kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
    return kt;
  }
};

}  // namespace operators
}  // namespace paddle

#define REGISTER_BINARY_LOGICAL_OP(op_type, _equation)                     \
  struct _##op_type##Comment {                                             \
    static char type[];                                                    \
    static char equation[];                                                \
  };                                                                       \
  char _##op_type##Comment::type[]{#op_type};                              \
  char _##op_type##Comment::equation[]{_equation};                         \
  REGISTER_OPERATOR(                                                       \
      op_type, ::paddle::operators::LogicalOp,                             \
      ::paddle::operators::BinaryLogicalOpProtoMaker<_##op_type##Comment>, \
      ::paddle::operators::BinaryLogicalOpInferShape<_##op_type##Comment>, \
      ::paddle::framework::EmptyGradOpMaker);

#define REGISTER_UNARY_LOGICAL_OP(op_type, _equation)                     \
  struct _##op_type##Comment {                                            \
    static char type[];                                                   \
    static char equation[];                                               \
  };                                                                      \
  char _##op_type##Comment::type[]{#op_type};                             \
  char _##op_type##Comment::equation[]{_equation};                        \
  REGISTER_OPERATOR(                                                      \
      op_type, ::paddle::operators::LogicalOp,                            \
      ::paddle::operators::UnaryLogicalOpProtoMaker<_##op_type##Comment>, \
      ::paddle::operators::UnaryLogicalOpInferShape<_##op_type##Comment>, \
      ::paddle::framework::EmptyGradOpMaker);

Y
update  
yi.wu 已提交
145
REGISTER_BINARY_LOGICAL_OP(logical_and, "$$Out = X \\&\\& Y$$");
146 147
REGISTER_BINARY_LOGICAL_KERNEL(logical_and, CPU,
                               paddle::operators::LogicalAndFunctor);
Y
update  
yi.wu 已提交
148
REGISTER_BINARY_LOGICAL_OP(logical_or, "$$Out = X || Y$$");
149 150
REGISTER_BINARY_LOGICAL_KERNEL(logical_or, CPU,
                               paddle::operators::LogicalOrFunctor);
Y
update  
yi.wu 已提交
151
REGISTER_UNARY_LOGICAL_OP(logical_not, "$$Out = !X$$");
152 153
REGISTER_UNARY_LOGICAL_KERNEL(logical_not, CPU,
                              paddle::operators::LogicalNotFunctor);
154
REGISTER_BINARY_LOGICAL_OP(logical_xor,
Y
update  
yi.wu 已提交
155
                           "$$Out = (X || Y) \\&\\& !(X \\&\\& Y)$$");
156 157
REGISTER_BINARY_LOGICAL_KERNEL(logical_xor, CPU,
                               paddle::operators::LogicalXorFunctor);