test_word2vec.py 4.5 KB
Newer Older
Q
QI JUN 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
import paddle.v2 as paddle
import paddle.v2.framework.layers as layers
import paddle.v2.framework.core as core
import paddle.v2.framework.optimizer as optimizer

from paddle.v2.framework.framework import Program, g_program
from paddle.v2.framework.executor import Executor

import numpy as np

init_program = Program()
program = Program()

embed_size = 32
hidden_size = 256
N = 5
batch_size = 32
18
is_sparse = True
Q
QI JUN 已提交
19 20 21 22 23 24 25

word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)

first_word = layers.data(
    name='firstw',
    shape=[1],
26
    data_type='int64',
Q
QI JUN 已提交
27 28 29 30 31
    program=program,
    init_program=init_program)
second_word = layers.data(
    name='secondw',
    shape=[1],
32
    data_type='int64',
Q
QI JUN 已提交
33 34 35 36 37
    program=program,
    init_program=init_program)
third_word = layers.data(
    name='thirdw',
    shape=[1],
38
    data_type='int64',
Q
QI JUN 已提交
39 40 41 42 43
    program=program,
    init_program=init_program)
forth_word = layers.data(
    name='forthw',
    shape=[1],
44
    data_type='int64',
Q
QI JUN 已提交
45 46 47 48 49
    program=program,
    init_program=init_program)
next_word = layers.data(
    name='nextw',
    shape=[1],
50
    data_type='int64',
Q
QI JUN 已提交
51 52 53 54 55 56 57
    program=program,
    init_program=init_program)

embed_first = layers.embedding(
    input=first_word,
    size=[dict_size, embed_size],
    data_type='float32',
58
    is_sparse=is_sparse,
Y
Yu Yang 已提交
59
    param_attr={'name': 'shared_w'},
Q
QI JUN 已提交
60 61 62 63 64 65
    program=program,
    init_program=init_program)
embed_second = layers.embedding(
    input=second_word,
    size=[dict_size, embed_size],
    data_type='float32',
66
    is_sparse=is_sparse,
Y
Yu Yang 已提交
67
    param_attr={'name': 'shared_w'},
Q
QI JUN 已提交
68 69 70 71 72 73 74
    program=program,
    init_program=init_program)

embed_third = layers.embedding(
    input=third_word,
    size=[dict_size, embed_size],
    data_type='float32',
75
    is_sparse=is_sparse,
Y
Yu Yang 已提交
76
    param_attr={'name': 'shared_w'},
Q
QI JUN 已提交
77 78 79 80 81 82
    program=program,
    init_program=init_program)
embed_forth = layers.embedding(
    input=forth_word,
    size=[dict_size, embed_size],
    data_type='float32',
83
    is_sparse=is_sparse,
Y
Yu Yang 已提交
84
    param_attr={'name': 'shared_w'},
Q
QI JUN 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    program=program,
    init_program=init_program)

concat_embed = layers.concat(
    input=[embed_first, embed_second, embed_third, embed_forth],
    axis=1,
    program=program,
    init_program=init_program)

hidden1 = layers.fc(input=concat_embed,
                    size=hidden_size,
                    act='sigmoid',
                    program=program,
                    init_program=init_program)
predict_word = layers.fc(input=hidden1,
                         size=dict_size,
                         act='softmax',
                         program=program,
                         init_program=init_program)
cost = layers.cross_entropy(
    input=predict_word,
    label=next_word,
    program=program,
    init_program=init_program)
avg_cost = layers.mean(x=cost, program=program, init_program=init_program)

sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
opts = sgd_optimizer.minimize(avg_cost)

train_reader = paddle.batch(
    paddle.dataset.imikolov.train(word_dict, N), batch_size)

place = core.CPUPlace()
exe = Executor(place)

exe.run(init_program, feed={}, fetch_list=[])
PASS_NUM = 100
for pass_id in range(PASS_NUM):
    for data in train_reader():
        input_data = [[data_idx[idx] for data_idx in data] for idx in xrange(5)]
125
        input_data = map(lambda x: np.array(x).astype("int64"), input_data)
Q
QI JUN 已提交
126 127 128 129 130 131
        input_data = map(lambda x: np.expand_dims(x, axis=1), input_data)

        first_data = input_data[0]
        first_tensor = core.LoDTensor()
        first_tensor.set(first_data, place)

132
        second_data = input_data[1]
Q
QI JUN 已提交
133 134 135
        second_tensor = core.LoDTensor()
        second_tensor.set(second_data, place)

136
        third_data = input_data[2]
Q
QI JUN 已提交
137 138 139
        third_tensor = core.LoDTensor()
        third_tensor.set(third_data, place)

140
        forth_data = input_data[3]
Q
QI JUN 已提交
141 142 143
        forth_tensor = core.LoDTensor()
        forth_tensor.set(forth_data, place)

144
        next_data = input_data[4]
Q
QI JUN 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        next_tensor = core.LoDTensor()
        next_tensor.set(next_data, place)

        outs = exe.run(program,
                       feed={
                           'firstw': first_tensor,
                           'secondw': second_tensor,
                           'thirdw': third_tensor,
                           'forthw': forth_tensor,
                           'nextw': next_tensor
                       },
                       fetch_list=[avg_cost])
        out = np.array(outs[0])
        if out[0] < 10.0:
            exit(0)  # if avg cost less than 10.0, we think our code is good.
exit(1)