mask.py 6.0 KB
Newer Older
F
FDInSky 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
import six
import math
import numpy as np
from numba import jit


@jit
def decode(cnts, m):
    v = 0
    mask = []
    for j in range(m):
        for k in range(cnts[j]):
            mask.append(v)
        v = 1 - v
    return mask


#@jit 
def poly2mask(xy, k, h, w):
    scale = 5.
    x = [int(scale * p + 0.5) for p in xy[::2]]
    x = x + [x[0]]
    y = [int(scale * p + 0.5) for p in xy[1::2]]
    y = y + [y[0]]
    m = sum([
        int(max(abs(x[j] - x[j + 1]), abs(y[j] - y[j + 1]))) + int(1)
        for j in range(k)
    ])
    u, v = [], []
    for j in range(k):
        xs = x[j]
        xe = x[j + 1]
        ys = y[j]
        ye = y[j + 1]
        dx = abs(xe - xs)
        dy = abs(ys - ye)
        flip = (dx >= dy and xs > xe) or (dx < dy and ys > ye)
        if flip:
            xs, xe = xe, xs
            ys, ye = ye, ys

        if dx >= dy:
            if (dx == 0):
                assert ye - ys == 0

            s = 0 if dx == 0 else float(ye - ys) / dx
        else:
            if (dy == 0):
                assert xe - xs == 0
            s = 0 if dy == 0 else float(xe - xs) / dy

        if dx >= dy:
            ts = [dx - d if flip else d for d in range(dx + 1)]
            u.extend([xs + t for t in ts])
            v.extend([int(ys + s * t + .5) for t in ts])
        else:
            ts = [dy - d if flip else d for d in range(dy + 1)]
            v.extend([t + ys for t in ts])
            u.extend([int(xs + s * t + .5) for t in ts])

    k = len(u)
    x = np.zeros((k), np.int)
    y = np.zeros((k), np.int)
    m = 0
    for j in six.moves.xrange(1, k):
        if u[j] != u[j - 1]:
            xd = float(u[j] if (u[j] < u[j - 1]) else (u[j] - 1))
            xd = (xd + .5) / scale - .5
            if (math.floor(xd) != xd or xd < 0 or xd > (w - 1)):
                continue
            yd = float(v[j] if v[j] < v[j - 1] else v[j - 1])
            yd = (yd + .5) / scale - .5
            yd = math.ceil(0 if yd < 0 else (h if yd > h else yd))
            x[m] = int(xd)
            y[m] = int(yd)
            m += 1
    k = m
    a = [int(x[i] * h + y[i]) for i in range(k)]
    a.append(h * w)
    a.sort()
    b = [0] + a[:len(a) - 1]
    a = [c - d for (c, d) in zip(a, b)]

    k += 1
    b = [0 for i in range(k)]
    b[0] = a[0]
    m, j = 1, 1
    while (j < k):
        if a[j] > 0:
            b[m] = a[j]
            m += 1
            j += 1
        else:
            j += 1
            if (j < k):
                b[m - 1] += a[j]
                j += 1
    mask = decode(b, m)
    mask = np.array(mask, dtype=np.int).reshape((w, h))
    mask = mask.transpose((1, 0))
    return mask


def polys_to_boxes(polys):
    """Convert a list of polygons into an array of tight bounding boxes."""
    boxes_from_polys = np.zeros((len(polys), 4), dtype=np.float32)
    for j in range(len(polys)):
        x_min, y_min = 10000000, 10000000
        x_max, y_max = 0, 0
        for i in range(len(polys[j])):
            poly = polys[j][i]
            x0 = min(min(p[::2]) for p in poly)
            x_min = min(x0, x_min)
            y0 = min(min(p[1::2]) for p in poly)
            y_min = min(y0, y_min)
            x1 = max(max(p[::2]) for p in poly)
            x_max = max(x_max, x1)
            y1 = max(max(p[1::2]) for p in poly)
            y_max = max(y1, y_max)
        boxes_from_polys[j, :] = [x_min, y_min, x_max, y_max]
    return boxes_from_polys


@jit
def bbox_overlaps_mask(boxes, query_boxes):
    N = boxes.shape[0]
    K = query_boxes.shape[0]
    overlaps = np.zeros((N, K), dtype=boxes.dtype)
    for k in range(K):
        box_area = (query_boxes[k, 2] - query_boxes[k, 0] + 1) *\
                   (query_boxes[k, 3] - query_boxes[k, 1] + 1)
        for n in range(N):
            iw = min(boxes[n, 2], query_boxes[k, 2]) -\
                 max(boxes[n, 0], query_boxes[k, 0]) + 1
            if iw > 0:
                ih = min(boxes[n, 3], query_boxes[k, 3]) -\
                     max(boxes[n, 1], query_boxes[k, 1]) + 1
                if ih > 0:
                    ua = float(
                         (boxes[n, 2] - boxes[n, 0] + 1) *\
                         (boxes[n, 3] - boxes[n, 1] + 1) +\
                         box_area - iw * ih)
                    overlaps[n, k] = iw * ih / ua
    return overlaps


@jit
def polys_to_mask_wrt_box(polygons, box, M):
    """Convert from the COCO polygon segmentation format to a binary mask
    encoded as a 2D array of data type numpy.float32. The polygon segmentation
    is understood to be enclosed in the given box and rasterized to an M x M
    mask. The resulting mask is therefore of shape (M, M).
    """
    w = box[2] - box[0]
    h = box[3] - box[1]
    w = np.maximum(w, 1)
    h = np.maximum(h, 1)

    polygons_norm = []
    i = 0
    for poly in polygons:
        p = np.array(poly, dtype=np.float32)
        p = p.reshape(-1)
        p[0::2] = (p[0::2] - box[0]) * M / w
        p[1::2] = (p[1::2] - box[1]) * M / h
        polygons_norm.append(p)

    mask = []
    for polygons in polygons_norm:
        assert polygons.shape[0] % 2 == 0, polygons.shape
        k = polygons.shape[0] // 2

        one_msk = poly2mask(polygons, k, M, M)
        mask.append(one_msk)

    mask = np.array(mask)
    # Flatten in case polygons was a list
    mask = np.sum(mask, axis=0)
    mask = np.array(mask > 0, dtype=np.float32)
    return mask


@jit
def expand_mask_targets(masks, mask_class_labels, resolution, num_classes):
    """Expand masks from shape (#masks, resolution ** 2)
    to (#masks, #classes * resolution ** 2) to encode class
    specific mask targets.
    """
    assert masks.shape[0] == mask_class_labels.shape[0]
    # Target values of -1 are "don't care" / ignore labels
    mask_targets = -np.ones(
        (masks.shape[0], num_classes * resolution**2), dtype=np.int32)
    for i in range(masks.shape[0]):
        cls = int(mask_class_labels[i])
        start = resolution**2 * cls
        end = start + resolution**2
        # Ignore background instance
        # (only happens when there is no fg samples in an image)
        if cls > 0:
            mask_targets[i, start:end] = masks[i, :]

    return mask_targets