rpn_head.py 3.6 KB
Newer Older
F
FDInSky 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
import paddle.fluid as fluid
from paddle.fluid.dygraph import Layer
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Normal
from paddle.fluid.regularizer import L2Decay
from paddle.fluid.dygraph.nn import Conv2D

from ppdet.core.workspace import register


@register
class RPNFeat(Layer):
    def __init__(self, feat_in=1024, feat_out=1024):
        super(RPNFeat, self).__init__()
15
        self.rpn_conv = Conv2D(
F
FDInSky 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
            num_channels=1024,
            num_filters=1024,
            filter_size=3,
            stride=1,
            padding=1,
            act='relu',
            param_attr=ParamAttr(
                "conv_rpn_w", initializer=Normal(
                    loc=0., scale=0.01)),
            bias_attr=ParamAttr(
                "conv_rpn_b", learning_rate=2., regularizer=L2Decay(0.)))

    def forward(self, inputs):
        x = inputs.get('res4')
        y = self.rpn_conv(x)
        outs = {'rpn_feat': y}
        return outs


@register
class RPNHead(Layer):
    __inject__ = ['rpn_feat']

    def __init__(self, anchor_per_position=15, rpn_feat=RPNFeat().__dict__):
        super(RPNHead, self).__init__()
        self.anchor_per_position = anchor_per_position
        self.rpn_feat = rpn_feat
        if isinstance(rpn_feat, dict):
            self.rpn_feat = RPNFeat(**rpn_feat)

        # rpn roi classification scores
47
        self.rpn_rois_score = Conv2D(
F
FDInSky 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
            num_channels=1024,
            num_filters=1 * self.anchor_per_position,
            filter_size=1,
            stride=1,
            padding=0,
            act=None,
            param_attr=ParamAttr(
                name="rpn_cls_logits_w", initializer=Normal(
                    loc=0., scale=0.01)),
            bias_attr=ParamAttr(
                name="rpn_cls_logits_b",
                learning_rate=2.,
                regularizer=L2Decay(0.)))

        # rpn roi bbox regression deltas
63
        self.rpn_rois_delta = Conv2D(
F
FDInSky 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
            num_channels=1024,
            num_filters=4 * self.anchor_per_position,
            filter_size=1,
            stride=1,
            padding=0,
            act=None,
            param_attr=ParamAttr(
                name="rpn_bbox_pred_w", initializer=Normal(
                    loc=0., scale=0.01)),
            bias_attr=ParamAttr(
                name="rpn_bbox_pred_b",
                learning_rate=2.,
                regularizer=L2Decay(0.)))

    def forward(self, inputs):
        outs = self.rpn_feat(inputs)
        x = outs['rpn_feat']
        rrs = self.rpn_rois_score(x)
        rrd = self.rpn_rois_delta(x)
        outs.update({'rpn_rois_score': rrs, 'rpn_rois_delta': rrd})
        return outs

    def loss(self, inputs):
        if callable(inputs['anchor_module']):
            rpn_targets = inputs['anchor_module'].generate_anchors_target(
                inputs)
        # cls loss
        score_tgt = fluid.layers.cast(
            x=rpn_targets['rpn_score_target'], dtype='float32')
        rpn_cls_loss = fluid.layers.sigmoid_cross_entropy_with_logits(
            x=rpn_targets['rpn_score_pred'], label=score_tgt)
        rpn_cls_loss = fluid.layers.reduce_mean(
            rpn_cls_loss, name='loss_rpn_cls')

        # reg loss
        rpn_reg_loss = fluid.layers.smooth_l1(
            x=rpn_targets['rpn_rois_pred'],
            y=rpn_targets['rpn_rois_target'],
            sigma=3.0,
            inside_weight=rpn_targets['rpn_rois_weight'],
            outside_weight=rpn_targets['rpn_rois_weight'])
        rpn_reg_loss = fluid.layers.reduce_mean(
            rpn_reg_loss, name='loss_rpn_reg')

        return rpn_cls_loss, rpn_reg_loss