parallel_executor.cc 20.0 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Y
Yu Yang 已提交
16 17
#include "ThreadPool.h"
#include "executor.h"
Y
Yu Yang 已提交
18 19
#include "lod_tensor.h"
#include "op_registry.h"
Y
Yang Yang 已提交
20 21

namespace paddle {
Y
Yu Yang 已提交
22 23
namespace framework {

Y
Yu Yang 已提交
24 25 26 27 28 29
#ifdef PADDLE_WITH_CUDA

// FIXME: CHECK the return value of x;
#define NCCL_INVOKE(x) x
#endif

Y
Yu Yang 已提交
30 31
struct OpHandle;

Y
Yu Yang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
struct VarHandleBase {
  virtual ~VarHandleBase() {}
  virtual std::string DebugString() const = 0;

  OpHandle *generated_op_;
  std::vector<OpHandle *> pending_ops_;
};

struct VarHandle : public VarHandleBase {
  std::string DebugString() const override {
    std::stringstream ss;
    ss << name_ << ":" << place_;
    return ss.str();
  }

Y
Yu Yang 已提交
47 48 49
  size_t version_;
  std::string name_;
  platform::Place place_;
Y
Yu Yang 已提交
50
};
Y
Yu Yang 已提交
51

Y
Yu Yang 已提交
52
struct DependencyVarHandle : public VarHandleBase {
Y
Yu Yang 已提交
53
  std::string DebugString() const override { return "Dependency Variable"; }
Y
Yu Yang 已提交
54 55 56
};

struct OpHandle {
Y
Yu Yang 已提交
57 58 59 60 61
  std::vector<VarHandleBase *> inputs_;
  std::vector<VarHandleBase *> outputs_;
  std::unordered_map<platform::Place, platform::DeviceContext *,
                     platform::PlaceHash>
      dev_ctx_;
Y
Yu Yang 已提交
62 63 64 65 66

  std::string DebugString() {
    std::stringstream ss;
    ss << "(";
    for (auto *var : inputs_) {
Y
Yu Yang 已提交
67
      ss << var->DebugString() << ", ";
Y
Yu Yang 已提交
68 69 70
    }
    ss << ") --> (";
    for (auto *var : outputs_) {
Y
Yu Yang 已提交
71
      ss << var->DebugString() << ", ";
Y
Yu Yang 已提交
72 73 74 75 76 77
    }
    ss << ")\n";
    return ss.str();
  }

  virtual ~OpHandle() {}
Y
Yu Yang 已提交
78

Y
Yu Yang 已提交
79
  virtual void Run() { PADDLE_THROW("Not implemented"); }
Y
Yu Yang 已提交
80
  virtual void Wait() {}
Y
Yu Yang 已提交
81 82 83 84
};

struct ComputationOpHandle : public OpHandle {
  std::unique_ptr<OperatorBase> op_;
Y
Yu Yang 已提交
85 86
  Scope *scope_;
  platform::Place place_;
Y
Yu Yang 已提交
87

Y
Yu Yang 已提交
88 89
  explicit ComputationOpHandle(const OpDesc &op_desc, Scope *scope,
                               platform::Place place)
Y
Yu Yang 已提交
90
      : op_(framework::OpRegistry::CreateOp(op_desc)),
Y
Yu Yang 已提交
91
        scope_(scope),
Y
Yu Yang 已提交
92 93 94 95
        place_(place) {}

  void Run() override {
    // Wait other op if necessary
Y
Yu Yang 已提交
96
    LOG(INFO) << "Run " << this << " " << DebugString();
Y
Yu Yang 已提交
97 98 99 100 101 102 103 104
    auto *cur_ctx = dev_ctx_[place_];
    for (auto *in : inputs_) {
      if (in->generated_op_ && in->generated_op_->dev_ctx_[place_] != cur_ctx) {
        in->generated_op_->Wait();
      }
    }

    op_->Run(*scope_, place_);
Y
Yu Yang 已提交
105
    LOG(INFO) << "Done " << this;
Y
Yu Yang 已提交
106
  }
Y
Yu Yang 已提交
107 108
};

Y
Yu Yang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
struct ScaleLossGradOpHandle : public OpHandle {
  float coeff_;
  Scope *scope_;
  platform::Place place_;

  explicit ScaleLossGradOpHandle(size_t num_dev, Scope *scope,
                                 platform::Place place)
      : coeff_(static_cast<float>(1.0 / num_dev)),
        scope_(scope),
        place_(place) {}

  void Run() override {
    LOG(INFO) << "Run Scale Loss Grad";

    std::string var_name = static_cast<VarHandle *>(this->outputs_[0])->name_;
Y
Yu Yang 已提交
124

Y
Yu Yang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    float *tmp = scope_->FindVar(var_name)
                     ->GetMutable<framework::LoDTensor>()
                     ->mutable_data<float>(make_ddim({1}), place_);

    if (platform::is_cpu_place(place_)) {
      *tmp = coeff_;
    } else {
      memory::Copy(
          boost::get<platform::CUDAPlace>(place_), tmp, platform::CPUPlace(),
          &coeff_, sizeof(float),
          static_cast<platform::CUDADeviceContext *>(this->dev_ctx_[place_])
              ->stream());
    }
  }
};

Y
Yu Yang 已提交
141 142
class ParallelExecutorPrivate {
 public:
Y
Yu Yang 已提交
143 144 145
  explicit ParallelExecutorPrivate(size_t num_threads = 12)
      : pool_(num_threads) {}

Y
Yu Yang 已提交
146 147
  std::unordered_map<platform::Place, Scope *, platform::PlaceHash>
      local_scopes_;
Y
Yu Yang 已提交
148

Y
Stash  
Yu Yang 已提交
149 150
  std::vector<platform::Place> places_;

Y
Yu Yang 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
#ifdef PADDLE_WITH_CUDA
  struct NCCLContext {
    std::unique_ptr<platform::CUDADeviceContext> ctx_;
    ncclComm_t comm;

    explicit NCCLContext(int dev_id) {
      ctx_.reset(new platform::CUDADeviceContext(platform::CUDAPlace(dev_id)));
    }

    cudaStream_t stream() const { return ctx_->stream(); }

    int device_id() const {
      return boost::get<platform::CUDAPlace>(ctx_->GetPlace()).device;
    }

Y
Update  
Yu Yang 已提交
166 167
    static void InitNCCLContext(std::unordered_map<int, NCCLContext> &contexts,
                                const std::vector<platform::Place> &places) {
Y
Yu Yang 已提交
168 169 170 171 172
      std::vector<ncclComm_t> comms;
      std::vector<int> devs;
      comms.resize(contexts.size());
      devs.reserve(contexts.size());

Y
Update  
Yu Yang 已提交
173 174
      for (auto &p : places) {
        devs.push_back(boost::get<platform::CUDAPlace>(p).device);
Y
Yu Yang 已提交
175 176 177 178 179 180
      }

      NCCL_INVOKE(platform::dynload::ncclCommInitAll(
          &comms[0], static_cast<int>(contexts.size()), &devs[0]));

      int i = 0;
Y
Update  
Yu Yang 已提交
181 182
      for (auto &dev_id : devs) {
        contexts.at(dev_id).comm = comms[i++];
Y
Yu Yang 已提交
183 184 185 186
      }
    }
  };

Y
Update  
Yu Yang 已提交
187
  std::unordered_map<int, NCCLContext> communication_streams_;
Y
Yu Yang 已提交
188 189 190 191 192 193 194 195

  NCCLContext &GetNCCLCtx(platform::Place p) {
    int dev_id = boost::get<platform::CUDAPlace>(p).device;
    return communication_streams_.at(dev_id);
  }

#endif

Y
Yu Yang 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208
  platform::DeviceContext *CommunicationDevCtx(const platform::Place &place) {
    if (platform::is_cpu_place(place) || local_scopes_.size() == 1) {
      return const_cast<platform::DeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place));
    } else {
#ifdef PADDLE_WITH_CUDA
      return GetNCCLCtx(place).ctx_.get();
#else
      PADDLE_THROW("Not compiled with CUDA")
#endif
    }
  }

Y
Yu Yang 已提交
209 210 211 212 213 214
  platform::Place main_place_;

  std::unordered_map<platform::Place,
                     std::unordered_map<std::string, std::map<int, VarHandle>>,
                     platform::PlaceHash>
      vars_;
Y
Yu Yang 已提交
215 216
  std::unordered_set<std::unique_ptr<VarHandleBase>> dep_vars_;

Y
Yu Yang 已提交
217
  std::vector<std::unique_ptr<OpHandle>> ops_;
Y
Yu Yang 已提交
218

Y
Yu Yang 已提交
219
  // Use a simpler thread pool, might be faster.
Y
Yu Yang 已提交
220
  ThreadPool pool_;
Y
Yu Yang 已提交
221 222

  std::unique_ptr<platform::EnforceNotMet> exception_;
Y
Yu Yang 已提交
223 224 225 226
};

// TODO(yy): Move this function somewhere
ncclDataType_t ToNCCLDataType(std::type_index type) {
Y
Stash  
Yu Yang 已提交
227 228 229 230 231 232 233 234 235
  if (type == typeid(float)) {  // NOLINT
    return ncclFloat;
  } else if (type == typeid(double)) {  // NOLINT
    return ncclDouble;
  } else if (type == typeid(int)) {  // NOLINT
    return ncclInt;
  } else {
    PADDLE_THROW("Not supported");
  }
Y
Yu Yang 已提交
236 237
}

Y
Yu Yang 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
struct NCCLAllReduceOpHandle : public OpHandle {
  ParallelExecutorPrivate *member_;

  explicit NCCLAllReduceOpHandle(ParallelExecutorPrivate *member)
      : member_(member) {}

  void Run() override {
    if (this->inputs_.size() == 1) {
      return;  // No need to all reduce when GPU count = 1;
    } else {
      auto &var_name = static_cast<VarHandle *>(this->inputs_[0])->name_;

      int dtype = -1;
      size_t numel = 0;

      for (auto &p : member_->places_) {
        int dev_id = boost::get<platform::CUDAPlace>(p).device;

        Scope *s = member_->local_scopes_[p];
        auto &lod_tensor = s->FindVar(var_name)->Get<framework::LoDTensor>();
        void *buffer = const_cast<void *>(lod_tensor.data<void>());
        if (dtype == -1) {
          dtype = ToNCCLDataType(lod_tensor.type());
        }

        if (numel == 0) {
          numel = static_cast<size_t>(lod_tensor.numel());
        }

        auto &nccl_ctx = member_->communication_streams_.at(dev_id);

        ncclAllReduce(buffer, buffer, numel, static_cast<ncclDataType_t>(dtype),
                      ncclSum, nccl_ctx.comm, nccl_ctx.stream());
      }

      ncclGroupEnd();
    }
  }
};

Y
Yu Yang 已提交
278 279 280 281 282 283
ParallelExecutor::ParallelExecutor(
    const std::vector<platform::Place> &places,
    const std::unordered_set<std::string> &params,
    const ProgramDesc &startup_program, const ProgramDesc &main_program,
    const std::string &loss_var_name, Scope *scope)
    : member_(new ParallelExecutorPrivate()) {
Y
Stash  
Yu Yang 已提交
284 285
  member_->places_ = places;

Y
Yu Yang 已提交
286 287 288 289 290 291 292 293 294 295
  // Step 1. RunStartupProgram and Bcast the params to devs.
  Executor exe(places[0]);
  exe.Run(startup_program, scope, 0);
  // Create local scopes
  for (auto &place : places) {
    member_->local_scopes_[place] = &scope->NewScope();
  }
  member_->main_place_ = places[0];

  // Bcast Parameters to all GPUs
Y
Yu Yang 已提交
296 297 298 299
  if (platform::is_gpu_place(member_->main_place_) &&
      member_->local_scopes_.size() != 1) {  // Is CUDA
    BuildNCCLCommunicator();
    BCastParamsToGPUs(startup_program);
Y
Yu Yang 已提交
300 301 302 303 304 305
  }
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  ConstructDependencyGraph(params, main_program, loss_var_name);
Y
Yu Yang 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318

  // Step 3. Create vars in each scope;
  for (auto &pair : member_->local_scopes_) {
    auto *scope = pair.second;

    for (auto *var : main_program.Block(0).AllVars()) {
      if (scope->FindVar(var->Name()) != nullptr) {
        continue;
      }

      InitializeVariable(scope->Var(var->Name()), var->GetType());
    }
  }
Y
Yu Yang 已提交
319 320 321 322 323
}

void ParallelExecutor::ConstructDependencyGraph(
    const std::unordered_set<std::string> &params,
    const ProgramDesc &main_program, const std::string &loss_var_name) const {
Y
Yu Yang 已提交
324
  std::unordered_set<std::string> grads;
Y
Yu Yang 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
  for (auto &each_param : params) {
    grads.insert(each_param + "@GRAD");
  }

  bool is_forwarding = true;
  for (auto *op : main_program.Block(0).AllOps()) {
    bool change_forward = false;

    if (!is_forwarding) {
      // FIXME(yy): Do not hard code like this
      if (op->OutputArgumentNames().size() == 1 &&
          op->OutputArgumentNames()[0] == loss_var_name + "@GRAD") {
        continue;  // Drop fill 1. for backward coeff;
      }
    }

    for (auto &pair : member_->local_scopes_) {
Y
Yu Yang 已提交
342 343
      member_->ops_.emplace_back(
          new ComputationOpHandle(*op, pair.second, pair.first));
Y
Yu Yang 已提交
344
      auto *op_handle = member_->ops_.back().get();
Y
Yu Yang 已提交
345 346
      op_handle->dev_ctx_[pair.first] = const_cast<platform::DeviceContext *>(
          platform::DeviceContextPool::Instance().Get(pair.first));
Y
Yu Yang 已提交
347 348 349 350 351 352 353

      auto var_names = op->InputArgumentNames();

      for (auto &each_var_name : var_names) {
        auto &place = pair.first;
        VarHandle *var = GetVarHandle(each_var_name, place);
        op_handle->inputs_.emplace_back(var);
Y
Yu Yang 已提交
354
        var->pending_ops_.emplace_back(op_handle);
Y
Yu Yang 已提交
355 356 357 358 359 360 361 362 363 364 365
      }
      var_names = op->OutputArgumentNames();

      for (auto &each_var_name : var_names) {
        auto &place = pair.first;
        GenerateVar(op_handle, each_var_name, place);
      }

      if (is_forwarding) {
        if (var_names.size() == 1 && var_names[0] == loss_var_name) {
          // Insert ScaleCost OpHandle
Y
Yu Yang 已提交
366 367
          member_->ops_.emplace_back(new ScaleLossGradOpHandle(
              this->member_->local_scopes_.size(), pair.second, pair.first));
Y
Yu Yang 已提交
368
          op_handle = member_->ops_.back().get();
Y
Yu Yang 已提交
369 370 371 372

          op_handle->dev_ctx_[pair.first] =
              member_->CommunicationDevCtx(pair.first);

Y
Yu Yang 已提交
373
          auto &place = pair.first;
Y
Yu Yang 已提交
374 375 376 377 378 379
          // FIXME: Currently ScaleLossGradOp only use device_count as scale
          // factor. So it does not depend on any other operators.
          // VarHandle *loss = GetVarHandle(loss_var_name, place);
          // loss->pending_ops_.emplace_back(op_handle);
          // op_handle->inputs_.emplace_back(loss);

Y
Yu Yang 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
          GenerateVar(op_handle, loss_var_name + "@GRAD", place);
          change_forward = true;
          LOG(INFO) << "Scale Loss " << op_handle->DebugString();
        }
      }
    }

    if (change_forward) {
      is_forwarding = false;
    }

    if (!is_forwarding) {
      auto var_names = op->OutputArgumentNames();
      for (auto &og : var_names) {
        if (grads.count(og) != 0) {  // is param grad
          // Insert NCCL AllReduce Op
Y
Yu Yang 已提交
396
          member_->ops_.emplace_back(new NCCLAllReduceOpHandle(member_));
Y
Yu Yang 已提交
397 398 399 400 401 402 403 404 405 406 407
          auto *op_handle = member_->ops_.back().get();

          for (auto &pair : member_->local_scopes_) {
            auto &place = pair.first;
            auto &vars = member_->vars_[place][og];

            if (vars.empty()) {  // This device has no data. continue.
              continue;
            }
            auto *prev_grad = &vars[vars.size() - 1];
            op_handle->inputs_.emplace_back(prev_grad);
Y
Yu Yang 已提交
408
            prev_grad->pending_ops_.emplace_back(op_handle);
Y
Yu Yang 已提交
409 410 411 412 413 414
            auto &var = vars[vars.size()];
            var.place_ = place;
            var.generated_op_ = op_handle;
            var.name_ = og;
            var.version_ = vars.size() - 1;
            op_handle->outputs_.emplace_back(&var);
Y
Yu Yang 已提交
415 416 417 418 419

            for (auto &pair : member_->local_scopes_) {
              op_handle->dev_ctx_[pair.first] =
                  member_->CommunicationDevCtx(pair.first);
            }
Y
Yu Yang 已提交
420 421 422 423 424
          }
        }
      }
    }
  }
Y
Yu Yang 已提交
425

Y
Yu Yang 已提交
426 427 428
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
Y
Yu Yang 已提交
429
   */
Y
Yu Yang 已提交
430 431
  PolishGraphToSupportDataHarzaeds();
}
Y
Yu Yang 已提交
432

Y
Yu Yang 已提交
433 434 435 436 437 438 439 440
/**
 * We only handle write after read(WAR), since it should not have a write
 * after write in program. If there are write after write operators, we need
 * prune them.
 *
 * https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
 */
void ParallelExecutor::PolishGraphToSupportDataHarzaeds() const {
Y
Yu Yang 已提交
441 442 443 444 445 446 447 448 449 450 451
  for (auto &place_pair : member_->vars_) {
    for (auto &name_pair : place_pair.second) {
      if (name_pair.second.size() <= 1) {
        return;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        auto *write_op = it_new->second.generated_op_;
        auto &read_ops = it_old->second.pending_ops_;
Y
Yu Yang 已提交
452 453 454 455 456 457 458 459 460
        auto *ex_write_op = it_old->second.generated_op_;

        if (ex_write_op == nullptr) {  // Nobody write this var.
          continue;
        }

        LOG(INFO) << "Link " << it_new->second.DebugString() << " From "
                  << it_old->second.version_ << " To "
                  << it_new->second.version_;
Y
Yu Yang 已提交
461 462 463

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
Y
Yu Yang 已提交
464 465 466 467
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
Y
Yu Yang 已提交
468 469

          auto *dep_var = new DependencyVarHandle();
Y
Yu Yang 已提交
470

Y
Yu Yang 已提交
471 472 473 474 475 476 477 478 479 480
          dep_var->generated_op_ = read_op;
          read_op->outputs_.emplace_back(dep_var);

          dep_var->pending_ops_.emplace_back(write_op);
          write_op->inputs_.emplace_back(dep_var);
          member_->dep_vars_.emplace(dep_var);
        }
      }
    }
  }
Y
Yu Yang 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
}

void ParallelExecutor::GenerateVar(OpHandle *op_handle,
                                   const std::string &each_var_name,
                                   const platform::Place &place) const {
  auto &vars = member_->vars_[place][each_var_name];
  size_t version = vars.size();
  auto &var = vars[version];
  var.version_ = version;
  var.generated_op_ = op_handle;
  var.name_ = each_var_name;
  var.place_ = place;
  op_handle->outputs_.emplace_back(&var);
}

VarHandle *ParallelExecutor::GetVarHandle(const std::string &each_var_name,
                                          const platform::Place &place) const {
  auto &var_holders = member_->vars_[place];
  auto &var_holder = var_holders[each_var_name];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    auto &init_var = var_holder[0];
    init_var.place_ = place;
    init_var.name_ = each_var_name;
    init_var.generated_op_ = nullptr;
    init_var.version_ = 0;
    var = &init_var;
  } else {
    var = &var_holder.rbegin()->second;
  }
  return var;
}

void ParallelExecutor::BCastParamsToGPUs(
    const ProgramDesc &startup_program) const {
Y
Yu Yang 已提交
516
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
517
  auto *main_scope = member_->local_scopes_[member_->main_place_];
Y
Yu Yang 已提交
518

Y
Yu Yang 已提交
519 520 521 522 523 524 525 526
  for (auto *var_desc : startup_program.Block(0).AllVars()) {
    if (var_desc->GetType() == proto::VarType::LOD_TENSOR) {
      auto &main_tensor =
          main_scope->FindVar(var_desc->Name())->Get<LoDTensor>();
      ncclDataType_t data_type = ToNCCLDataType(main_tensor.type());
      auto &dims = main_tensor.dims();
      size_t numel = main_tensor.numel();

Y
Stash  
Yu Yang 已提交
527
      platform::dynload::ncclGroupStart();
Y
Yu Yang 已提交
528

Y
Update  
Yu Yang 已提交
529 530 531 532 533 534 535 536 537 538 539 540
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
        if (i == 0) {
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
          auto local_scope = member_->local_scopes_[place];
          auto *t = local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
          t->Resize(dims);
          buffer = t->mutable_data(place, main_tensor.type());
        }

Y
Stash  
Yu Yang 已提交
541
        auto &nccl_ctx = member_->GetNCCLCtx(place);
Y
Update  
Yu Yang 已提交
542
        platform::dynload::ncclBcast(buffer, numel, data_type, 0, nccl_ctx.comm,
Y
Stash  
Yu Yang 已提交
543
                                     nccl_ctx.stream());
Y
Yu Yang 已提交
544
      }
Y
Stash  
Yu Yang 已提交
545 546 547
      platform::dynload::ncclGroupEnd();
    }
  }
Y
Yu Yang 已提交
548

Y
Yu Yang 已提交
549
  // Debug code, bias should be 1.0f.
Y
Stash  
Yu Yang 已提交
550 551
  for (auto &pair : member_->local_scopes_) {
    member_->GetNCCLCtx(pair.first).ctx_->Wait();
Y
Yu Yang 已提交
552

Y
Stash  
Yu Yang 已提交
553
    auto &b = pair.second->FindVar("fc_0.b_0")->Get<framework::LoDTensor>();
Y
Stash  
Yu Yang 已提交
554 555 556 557
    framework::LoDTensor cpu;
    framework::TensorCopy(b, platform::CPUPlace(), &cpu);
    platform::DeviceContextPool::Instance().Get(b.place())->Wait();
    LOG(INFO) << *cpu.data<float>();
Y
Yu Yang 已提交
558
  }
Y
Stash  
Yu Yang 已提交
559

Y
Yu Yang 已提交
560 561 562 563
#else
  PADDLE_THROW("Not compiled with CUDA");
#endif
}
Y
Yu Yang 已提交
564

Y
Yu Yang 已提交
565 566 567 568 569
void ParallelExecutor::BuildNCCLCommunicator() const {
#ifdef PADDLE_WITH_CUDA
  for (auto &place_pair : member_->local_scopes_) {
    auto place = place_pair.first;
    int dev_id = boost::get<platform::CUDAPlace>(place).device;
Y
Yu Yang 已提交
570

Y
Yu Yang 已提交
571 572
    member_->communication_streams_.emplace(
        dev_id, ParallelExecutorPrivate::NCCLContext(dev_id));
Y
Yu Yang 已提交
573
  }
Y
Yu Yang 已提交
574 575

  ParallelExecutorPrivate::NCCLContext::InitNCCLContext(
Y
Update  
Yu Yang 已提交
576
      member_->communication_streams_, member_->places_);
Y
Yu Yang 已提交
577
#endif
Y
Yu Yang 已提交
578 579 580 581 582
}

std::vector<LoDTensor> ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors) {
  // Version --> VarHandle
Y
Yu Yang 已提交
583
  member_->exception_.reset();
Y
Yu Yang 已提交
584
  std::unordered_map<VarHandleBase *, bool> pending_vars;
Y
Yu Yang 已提交
585 586 587 588 589
  std::unordered_map<OpHandle *, size_t> pending_ops;

  for (auto &place_pair : member_->vars_) {
    for (auto &name_pair : place_pair.second) {
      for (auto &version_pair : name_pair.second) {
Y
Yu Yang 已提交
590 591
        pending_vars[&version_pair.second] =
            version_pair.second.generated_op_ == nullptr;
Y
Yu Yang 已提交
592 593 594 595
      }
    }
  }

Y
Yu Yang 已提交
596 597 598 599
  for (auto &var : member_->dep_vars_) {
    pending_vars[var.get()] = var->generated_op_ == nullptr;
  }

Y
Yu Yang 已提交
600 601
  std::vector<OpHandle *> to_run;

Y
Yu Yang 已提交
602
  for (auto &op : member_->ops_) {
Y
Yu Yang 已提交
603 604 605 606 607 608 609 610 611
    if (op->inputs_.empty()) {  // Special case, Op has no input.
      to_run.emplace_back(op.get());
    } else {
      pending_ops.insert({op.get(), op->inputs_.size()});
    }
  }

  for (auto *op : to_run) {
    RunOp(pending_vars, op);
Y
Yu Yang 已提交
612 613
  }

Y
Yu Yang 已提交
614
  while (!pending_ops.empty()) {
Y
Yu Yang 已提交
615
    VarHandleBase *ready_var = nullptr;
Y
Yu Yang 已提交
616 617 618
    for (auto &pair : pending_vars) {
      if (pair.second) {
        ready_var = pair.first;
Y
Yu Yang 已提交
619 620
      }
    }
Y
Yu Yang 已提交
621 622

    if (ready_var == nullptr) {
Y
Yu Yang 已提交
623 624 625 626 627 628 629
      // FIXME use conditional var instead of busy wait.

      if (member_->exception_) {
        throw * member_->exception_;
      }

      std::this_thread::yield();
Y
Yu Yang 已提交
630
      continue;
Y
Yu Yang 已提交
631 632
    }

Y
Yu Yang 已提交
633 634
    pending_vars.erase(ready_var);

Y
Yu Yang 已提交
635
    to_run.clear();
Y
Yu Yang 已提交
636 637 638 639 640 641

    for (auto *op : ready_var->pending_ops_) {
      auto &deps = pending_ops[op];
      --deps;
      if (deps == 0) {
        to_run.emplace_back(op);
Y
Yu Yang 已提交
642 643 644 645 646
      }
    }

    for (auto *op : to_run) {
      pending_ops.erase(op);
Y
Yu Yang 已提交
647
      RunOp(pending_vars, op);
Y
Yu Yang 已提交
648 649 650 651
    }
  }
  return std::vector<LoDTensor>();
}
Y
Yu Yang 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

void ParallelExecutor::RunOp(
    std::unordered_map<VarHandleBase *, bool> &pending_vars,
    OpHandle *op) const {
  std::vector<bool *> ready_buffer;
  for (auto *var : op->outputs_) {
    ready_buffer.emplace_back(&pending_vars[var]);
  }

  auto op_run = [ready_buffer, op, this] {
    try {
      // TODO(yy) Check Previous Op has same dev ctx.
      op->Run();
      for (auto *ready : ready_buffer) {
        *ready = true;
      }
    } catch (platform::EnforceNotMet ex) {
      member_->exception_.reset(new platform::EnforceNotMet(ex));
    } catch (...) {
      LOG(FATAL) << "Unknown exception catched";
    }
  };

  member_->pool_.enqueue(op_run);
}
Y
Yu Yang 已提交
677
}  // namespace framework
Y
Yang Yang 已提交
678
}  // namespace paddle