GETTING_STARTED.md 8.7 KB
Newer Older
1 2
# Getting Started

K
Kaipeng Deng 已提交
3
For setting up the running environment, please refer to [installation
4 5 6
instructions](INSTALL.md).


W
wangguanzhong 已提交
7
## Training/Evaluation/Inference
8

W
wangguanzhong 已提交
9
PaddleDetection provides scripots for training, evalution and inference with various features according to different configure.
10 11

```bash
W
wangguanzhong 已提交
12
# set PYTHONPATH
13
export PYTHONPATH=$PYTHONPATH:.
W
wangguanzhong 已提交
14
# training in single-GPU and multi-GPU. specify different GPU numbers by CUDA_VISIBLE_DEVICES
15
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
16
python tools/train.py -c configs/faster_rcnn_r50_1x.yml
W
wangguanzhong 已提交
17 18 19 20 21
# GPU evalution
export CUDA_VISIBLE_DEVICES=0
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml
# Inference
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_img=demo/000000570688.jpg
22 23
```

W
wangguanzhong 已提交
24
### Optional argument list
25

W
wangguanzhong 已提交
26
list below can be viewed by `--help`
27

W
wangguanzhong 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|         FLAG             |  script supported  |    description    |     default     |      remark      |
| :----------------------: | :------------: | :---------------: | :--------------: | :-----------------: |
|          -c              |      ALL       |  Select config file  |  None  |  **The whole description of configure can refer to [config_example](config_example)** |
|          -o              |      ALL       |  Set parameters in configure file  |  None  |  `-o` has higher priority to file configured by `-c`. Such as `-o use_gpu=False max_iter=10000`  |  
|   -r/--resume_checkpoint |     train      |  Checkpoint path for resuming training  |  None  |  `-r output/faster_rcnn_r50_1x/10000`  |
|        --eval            |     train      |  Whether to perform evaluation in training  |  False  |    |
|      --output_eval       |     train/eval |  json path in evalution  |  current path  |  `--output_eval ./json_result`  |
|   -d/--dataset_dir       |   train/eval   |  path for dataset, same as dataset_dir in configs  |  None  |  `-d dataset/coco`  |
|       --fp16             |     train      |  Whether to enable mixed precision training  |  False  |  GPU training is required  |
|       --loss_scale       |     train      |  Loss scaling factor for mixed precision training  |  8.0  |  enable when `--fp16` is True  |  
|       --json_eval        |       eval     |  Whether to evaluate with already existed bbox.json or mask.json  |  False  |  json path is set in `--output_eval`  |
|       --output_dir       |      infer     |  Directory for storing the output visualization files  |  `./output`  |  `--output_dir output`  |
|    --draw_threshold      |      infer     |  Threshold to reserve the result for visualization  |  0.5  |  `--draw_threshold 0.7`  |
|  --save\_inference_model |      infer      |  Whether to save inference model in output_dir  |  False  |  save_inference_model is saved in `--output_dir`  |
|      --infer_dir         |       infer     |  Directory for images to perform inference on  |  None  |    |
|      --infer_img         |       infer     |  Image path  |  None  |  higher priority over --infer_dir  |
|        --use_tb          |   train/infer   |  Whether to record the data with [tb-paddle](https://github.com/linshuliang/tb-paddle), so as to display in Tensorboard  |  False  |      |
|        --tb\_log_dir     |   train/infer   |  tb-paddle logging directory for image  |  train:`tb_log_dir/scalar` infer: `tb_log_dir/image`  |     |
46 47


W
wangguanzhong 已提交
48
## Examples
49

W
wangguanzhong 已提交
50
### Training
51 52 53

- Perform evaluation in training

W
wangguanzhong 已提交
54 55 56 57
  ```bash
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml --eval
  ```
58

W
wangguanzhong 已提交
59
  Perform training and evalution alternatively and evaluate at each snapshot_iter. Meanwhile, the best model with highest MAP is saved at each `snapshot_iter` which has the same path as `model_final`.
60

W
wangguanzhong 已提交
61
  If evaluation dataset is large, we suggest decreasing evaluation times or evaluating after training.
62

63 64
- Fine-tune other task

W
wangguanzhong 已提交
65
  When using pre-trained model to fine-tune other task, two methods can be used:
66

W
wangguanzhong 已提交
67 68
  1. The excluded pre-trained parameters can be set by `finetune_exclude_pretrained_params` in YAML config
  2. Set -o finetune\_exclude\_pretrained_params in the arguments.
69

W
wangguanzhong 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83
  ```bash
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml \
                           -o pretrain_weights=output/faster_rcnn_r50_1x/model_final/ \
                              finetune_exclude_pretrained_params = ['cls_score','bbox_pred']
  ```

##### NOTES

- `CUDA_VISIBLE_DEVICES` can specify different gpu numbers. Such as: `export CUDA_VISIBLE_DEVICES=0,1,2,3`. GPU calculation rules can refer [FAQ](#faq)
- Dataset will be downloaded automatically and cached in `~/.cache/paddle/dataset` if not be found locally.
- Pretrained model is downloaded automatically and cached in `~/.cache/paddle/weights`.
- Checkpoints are saved in `output` by default, and can be revised from save_dir in configure files.
- RCNN models training on CPU is not supported on PaddlePaddle<=1.5.1 and will be fixed on later version.
84

W
wangguanzhong 已提交
85 86

### Mixed Precision Training
87 88 89 90 91 92 93 94 95 96 97 98 99 100

Mixed precision training can be enabled with `--fp16` flag. Currently Faster-FPN, Mask-FPN and Yolov3 have been verified to be working with little to no loss of precision (less than 0.2 mAP)

To speed up mixed precision training, it is recommended to train in multi-process mode, for example

```bash
python -m paddle.distributed.launch --selected_gpus 0,1,2,3,4,5,6,7 tools/train.py --fp16 -c configs/faster_rcnn_r50_fpn_1x.yml
```

If loss becomes `NaN` during training, try tweak the `--loss_scale` value. Please refer to the Nvidia [documentation](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#mptrain) on mixed precision training for details.

Also, please note mixed precision training currently requires changing `norm_type` from `affine_channel` to `bn`.


101

W
wangguanzhong 已提交
102
### Evaluation
103

W
wangguanzhong 已提交
104
- Evaluate by specified weights path and dataset path
105

W
wangguanzhong 已提交
106 107 108 109 110 111
  ```bash
  export CUDA_VISIBLE_DEVICES=0
  python -u tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
                          -o weights=https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar \
                          -d dataset/coco
  ```
112

W
wangguanzhong 已提交
113
  The path of model to be evaluted can be both local path and link in [MODEL_ZOO](MODEL_ZOO_cn.md).
114

115
- Evaluate with json
W
wangguanzhong 已提交
116 117 118 119

  ```bash
  export CUDA_VISIBLE_DEVICES=0
  python tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
W
wangguanzhong 已提交
120 121
             --json_eval \
             -f evaluation/
W
wangguanzhong 已提交
122
  ```
123

W
wangguanzhong 已提交
124
  The json file must be named bbox.json or mask.json, placed in the `evaluation/` directory.
125 126 127

#### NOTES

128 129 130 131
- Multi-GPU evaluation for R-CNN and SSD models is not supported at the
moment, but it is a planned feature


W
wangguanzhong 已提交
132
### Inference
133 134

- Output specified directory && Set up threshold
135

W
wangguanzhong 已提交
136 137 138
  ```bash
  export CUDA_VISIBLE_DEVICES=0
  python tools/infer.py -c configs/faster_rcnn_r50_1x.yml \
139 140
                      --infer_img=demo/000000570688.jpg \
                      --output_dir=infer_output/ \
141
                      --draw_threshold=0.5 \
142 143
                      -o weights=output/faster_rcnn_r50_1x/model_final \
                      --use_tb=Ture
W
wangguanzhong 已提交
144 145 146 147
  ```

  `--draw_threshold` is an optional argument. Default is 0.5.
  Different thresholds will produce different results depending on the calculation of [NMS](https://ieeexplore.ieee.org/document/1699659).
148

149

150 151
- Save inference model

W
wangguanzhong 已提交
152 153 154
  ```bash
  export CUDA_VISIBLE_DEVICES=0
  python tools/infer.py -c configs/faster_rcnn_r50_1x.yml \
155
                      --infer_img=demo/000000570688.jpg \
156
                      --save_inference_model
W
wangguanzhong 已提交
157
  ```
158

W
wangguanzhong 已提交
159
  Save inference model by set `--save_inference_model`, which can be loaded by PaddlePaddle predict library.
160

161 162 163

## FAQ

Q
qingqing01 已提交
164 165
**Q:**  Why do I get `NaN` loss values during single GPU training? </br>
**A:**  The default learning rate is tuned to multi-GPU training (8x GPUs), it must
166 167
be adapted for single GPU training accordingly (e.g., divide by 8).
The calculation rules are as follows,they are equivalent: </br>
168

169

170 171
| GPU number  | Learning rate  | Max_iters | Milestones       |
| :---------: | :------------: | :-------: | :--------------: |
172 173 174
| 2           | 0.0025         | 720000    | [480000, 640000] |
| 4           | 0.005          | 360000    | [240000, 320000] |
| 8           | 0.01           | 180000    | [120000, 160000] |
175

176

Q
qingqing01 已提交
177 178 179 180 181
**Q:**  How to reduce GPU memory usage? </br>
**A:**  Setting environment variable FLAGS_conv_workspace_size_limit to a smaller
number can reduce GPU memory footprint without affecting training speed.
Take Mask-RCNN (R50) as example, by setting `export FLAGS_conv_workspace_size_limit=512`,
batch size could reach 4 per GPU (Tesla V100 16GB).
182 183 184 185 186 187


**Q:**  How to change data preprocessing? </br>
**A:**  Set `sample_transform` in configuration. Note that **the whole transforms** need to be added in configuration.
For example, `DecodeImage`, `NormalizeImage` and `Permute` in RCNN models. For detail description, please refer
to [config_example](config_example).