Matrix.cpp 8.7 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "PaddleAPI.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
#include "paddle/math/CpuSparseMatrix.h"
#include <iostream>
#include <cstring>

struct MatrixPrivate {
  std::shared_ptr<paddle::Matrix> mat;
};

Matrix::Matrix() : m(new MatrixPrivate()) {}

Matrix* Matrix::createByPaddleMatrixPtr(void* sharedPtr) {
  auto* mat = reinterpret_cast<paddle::MatrixPtr*>(sharedPtr);
  if ((*mat) != nullptr) {
    auto m = new Matrix();
    m->m->mat = *mat;
    return m;
  } else {
    return nullptr;
  }
}

Matrix* Matrix::createZero(size_t height, size_t width, bool useGpu) {
  auto m = new Matrix();
  m->m->mat = paddle::Matrix::create(height, width, useGpu);
  m->m->mat->zero();
  return m;
}

L
liaogang 已提交
47
Matrix* Matrix::createDense(const std::vector<float>& data, size_t height,
Z
zhangjinchao01 已提交
48 49 50 51 52 53 54
                            size_t width, bool useGpu) {
  auto m = new Matrix();
  m->m->mat = paddle::Matrix::create(height, width, useGpu);
  m->m->mat->copyFrom(data.data(), data.size());
  return m;
}

L
liaogang 已提交
55
Matrix* Matrix::createCpuDenseFromNumpy(float* data, int dim1, int dim2,
Z
zhangjinchao01 已提交
56 57 58 59 60 61 62 63 64 65 66
                                        bool copy) {
  auto m = new Matrix();
  if (copy) {
    m->m->mat = paddle::Matrix::create(dim1, dim2);
    m->m->mat->copyFrom(data, dim1 * dim2);
  } else {
    m->m->mat = paddle::Matrix::create(data, dim1, dim2, false);
  }
  return m;
}

L
liaogang 已提交
67
Matrix* Matrix::createGpuDenseFromNumpy(float* data, int dim1, int dim2) {
Z
zhangjinchao01 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  auto m = new Matrix();
  m->m->mat = paddle::Matrix::create(dim1, dim2, false, true);
  m->m->mat->copyFrom(data, dim1 * dim2);
  return m;
}

Matrix* Matrix::createSparse(size_t height, size_t width, size_t nnz,
                             bool isNonVal, bool isTrans, bool useGpu) {
  auto m = new Matrix();
  m->m->mat = paddle::Matrix::createSparseMatrix(
      height, width, nnz, isNonVal ? paddle::NO_VALUE : paddle::FLOAT_VALUE,
      isTrans, useGpu);
  return m;
}

Matrix::~Matrix() { delete m; }

size_t Matrix::getHeight() const { return m->mat->getHeight(); }

size_t Matrix::getWidth() const { return m->mat->getWidth(); }

L
liaogang 已提交
89
float Matrix::get(size_t x, size_t y) const throw(RangeError) {
Z
zhangjinchao01 已提交
90 91 92 93 94 95 96
  if (x > this->getWidth() || y > this->getHeight()) {
    RangeError e;
    throw e;
  }
  return m->mat->getElement(x, y);
}

L
liaogang 已提交
97
void Matrix::set(size_t x, size_t y, float val) throw(RangeError,
L
liaogang 已提交
98
                                                      UnsupportError) {
Z
zhangjinchao01 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  if (x > this->getWidth() || y > this->getHeight()) {
    RangeError e;
    throw e;
  }
  auto rawMat = m->mat.get();
  if (auto cDenseMat = dynamic_cast<paddle::CpuMatrix*>(rawMat)) {
    *(cDenseMat->getData() + x + y * cDenseMat->getWidth()) = val;
  } else {
    UnsupportError e;
    throw e;
  }
}

bool Matrix::isSparse() const {
  auto raw_mat = m->mat.get();
  return dynamic_cast<paddle::CpuSparseMatrix*>(raw_mat) != nullptr ||
         dynamic_cast<paddle::GpuSparseMatrix*>(raw_mat) != nullptr;
}

SparseValueType Matrix::getSparseValueType() const throw(UnsupportError) {
  auto cpuSparseMat =
      std::dynamic_pointer_cast<paddle::CpuSparseMatrix>(m->mat);
  if (cpuSparseMat != nullptr) {
    return (SparseValueType)cpuSparseMat->getValueType();
  } else {
    auto gpuSparseMat =
        std::dynamic_pointer_cast<paddle::GpuSparseMatrix>(m->mat);
    if (gpuSparseMat != nullptr) {
      return (SparseValueType)gpuSparseMat->getValueType();
    } else {
      UnsupportError e;
      throw e;
    }
  }
}

SparseFormatType Matrix::getSparseFormat() const throw(UnsupportError) {
  auto cpuSparseMat =
      std::dynamic_pointer_cast<paddle::CpuSparseMatrix>(m->mat);
  if (cpuSparseMat != nullptr) {
    return (SparseFormatType)cpuSparseMat->getFormat();
  } else {
    auto gpuSparseMat =
        std::dynamic_pointer_cast<paddle::GpuSparseMatrix>(m->mat);
    if (gpuSparseMat != nullptr) {
      return SPARSE_CSR;
    } else {
      UnsupportError e;
      throw e;
    }
  }
}

IntArray Matrix::getSparseRowCols(size_t i) const
    throw(UnsupportError, RangeError) {
  auto cpuSparseMat =
      std::dynamic_pointer_cast<paddle::CpuSparseMatrix>(m->mat);
  if (cpuSparseMat != nullptr &&
      cpuSparseMat->getFormat() == paddle::SPARSE_CSR) {
    if (i < cpuSparseMat->getHeight()) {
      // cpuSparseMat->print(std::cout);
      size_t len = cpuSparseMat->getColNum(i);
      return IntArray(cpuSparseMat->getRowCols(i), len);
    } else {
      RangeError e;
      throw e;
    }
  } else {
    UnsupportError e;
    throw e;
  }
}

IntWithFloatArray Matrix::getSparseRowColsVal(size_t i) const
    throw(UnsupportError, RangeError) {
  auto cpuSparseMat =
      std::dynamic_pointer_cast<paddle::CpuSparseMatrix>(m->mat);
  if (cpuSparseMat != nullptr &&
      cpuSparseMat->getValueType() == paddle::FLOAT_VALUE) {
    if (i < cpuSparseMat->getHeight()) {
      return IntWithFloatArray(cpuSparseMat->getRowValues(i),
                               cpuSparseMat->getRowCols(i),
                               cpuSparseMat->getColNum(i));
    } else {
      RangeError e;
      throw e;
    }
  } else {
    UnsupportError e;
    throw e;
  }
}

FloatArray Matrix::getData() const {
  auto rawMat = m->mat.get();
  if (dynamic_cast<paddle::GpuMemoryHandle*>(rawMat->getMemoryHandle().get())) {
    // is gpu. then copy data
L
liaogang 已提交
196
    float* data = rawMat->getData();
Z
zhangjinchao01 已提交
197
    size_t len = rawMat->getElementCnt();
L
liaogang 已提交
198 199
    float* cpuData = new float[len];
    hl_memcpy_device2host(cpuData, data, len * sizeof(float));
Z
zhangjinchao01 已提交
200 201 202 203 204 205 206 207 208 209 210
    FloatArray ret_val(cpuData, len);
    ret_val.needFree = true;
    return ret_val;
  } else {
    FloatArray ret_val(rawMat->getData(), rawMat->getElementCnt());
    return ret_val;
  }
}

void Matrix::sparseCopyFrom(
    const std::vector<int>& rows, const std::vector<int>& cols,
L
liaogang 已提交
211
    const std::vector<float>& vals) throw(UnsupportError) {
Z
zhangjinchao01 已提交
212 213 214 215 216 217 218 219
  auto cpuSparseMat =
      std::dynamic_pointer_cast<paddle::CpuSparseMatrix>(m->mat);
  if (cpuSparseMat != nullptr) {
    // LOG(INFO) <<"RowSize = "<<rows.size()
    //  <<" ColSize = "<<cols.size()
    //  <<" ValSize = "<<vals.size();
    cpuSparseMat->copyFrom(const_cast<std::vector<int>&>(rows),
                           const_cast<std::vector<int>&>(cols),
L
liaogang 已提交
220
                           const_cast<std::vector<float>&>(vals));
Z
zhangjinchao01 已提交
221 222 223 224 225 226 227 228
  } else {
    UnsupportError e;
    throw e;
  }
}

void* Matrix::getSharedPtr() const { return &m->mat; }

L
liaogang 已提交
229
void Matrix::toNumpyMatInplace(float** view_data, int* dim1,
Z
zhangjinchao01 已提交
230 231 232 233 234 235 236 237 238 239
                               int* dim2) throw(UnsupportError) {
  auto cpuMat = std::dynamic_pointer_cast<paddle::CpuMatrix>(m->mat);
  if (cpuMat) {
    *dim1 = cpuMat->getHeight();
    *dim2 = cpuMat->getWidth();
    *view_data = cpuMat->getData();
  } else {
    throw UnsupportError();
  }
}
L
liaogang 已提交
240
void Matrix::copyToNumpyMat(float** view_m_data, int* dim1,
Z
zhangjinchao01 已提交
241
                            int* dim2) throw(UnsupportError) {
L
liaogang 已提交
242
  static_assert(sizeof(paddle::real) == sizeof(float),
Z
zhangjinchao01 已提交
243 244 245 246 247 248 249
                "Currently PaddleAPI only support for single "
                "precision version of paddle.");
  if (this->isSparse()) {
    throw UnsupportError();
  } else {
    *dim1 = m->mat->getHeight();
    *dim2 = m->mat->getWidth();
L
liaogang 已提交
250
    *view_m_data = new float[(*dim1) * (*dim2)];
Z
zhangjinchao01 已提交
251 252 253
    if (auto cpuMat = dynamic_cast<paddle::CpuMatrix*>(m->mat.get())) {
      auto src = cpuMat->getData();
      auto dest = *view_m_data;
L
liaogang 已提交
254
      std::memcpy(dest, src, sizeof(paddle::real) * (*dim1) * (*dim2));
Z
zhangjinchao01 已提交
255 256 257 258
    } else if (auto gpuMat = dynamic_cast<paddle::GpuMatrix*>(m->mat.get())) {
      auto src = gpuMat->getData();
      auto dest = *view_m_data;
      hl_memcpy_device2host(dest, src,
L
liaogang 已提交
259
                            sizeof(paddle::real) * (*dim1) * (*dim2));
Z
zhangjinchao01 已提交
260 261 262 263 264 265 266
    } else {
      LOG(WARNING) << "Unexpected Situation";
      throw UnsupportError();
    }
  }
}

L
liaogang 已提交
267
void Matrix::copyFromNumpyMat(float* data, int dim1,
Z
zhangjinchao01 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
                              int dim2) throw(UnsupportError, RangeError) {
  if (isSparse()) {
    throw UnsupportError();
  } else {
    if (this->getHeight() == (size_t)dim1 && this->getWidth() == (size_t)dim2) {
      if (m->mat->getData() != data) {
        m->mat->copyFrom(data, dim1 * dim2);
      }
    } else {
      throw RangeError();
    }
  }
}

bool Matrix::isGpu() const {
  auto rawPtr = m->mat.get();
  return dynamic_cast<paddle::GpuMatrix*>(rawPtr) != nullptr ||
         dynamic_cast<paddle::GpuSparseMatrix*>(rawPtr) != nullptr;
}